CS 112 Introduction to Programming
(Spring 2012)

Lecture #13: Recursion

Zhong Shao

Department of Computer Science
Yale University
Office: 314 Watson

http://flint.cs.yale.edu/cs112

Acknowledgements: some slides used in this class are taken directly or adapted from those accompanying the textbook: Introduction to Programming in Java: An Interdisciplinary Approach by Robert Sedgewick and Kevin Wayne (Copyright 2002-2010)
Overview

What is recursion? When one function calls itself directly or indirectly.

Why learn recursion?
- New mode of thinking.
- Powerful programming paradigm.

Many computations are naturally self-referential.
- Mergesort, FFT, gcd, depth-first search.
- Linked data structures.
- A folder contains files and other folders.

Closely related to mathematical induction.

Reproductive Parts
M. C. Escher, 1948
Greatest Common Divisor

Gcd. Find largest integer that evenly divides into \(p \) and \(q \).

Ex. \(\text{gcd}(4032, 1272) = 24 \).

\[
\begin{align*}
4032 &= 2^6 \times 3^2 \times 7^1 \\
1272 &= 2^3 \times 3^1 \times 53^1 \\
\text{gcd} &= 2^3 \times 3^1 = 24
\end{align*}
\]

Applications.
- Simplify fractions: \(1272/4032 = 53/168 \).
- RSA cryptosystem.
Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

Euclid's algorithm. [Euclid 300 BCE]

\[
gcd(p, q) = \begin{cases}
 p & \text{if } q = 0 \\
 gcd(q, p \% q) & \text{otherwise}
\end{cases}
\]

- base case
- reduction step, converges to base case

\[
gcd(4032, 1272) = gcd(1272, 216) = gcd(216, 192) = gcd(192, 24) = gcd(24, 0) = 24.
\]

\[
4032 = 3 \times 1272 + 216
\]
Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

\[
gcd(p, q) = \begin{cases}
 p & \text{if } q = 0 \\
 gcd(q, p \% q) & \text{otherwise}
\end{cases}
\]

- base case
- reduction step, converges to base case

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>q</th>
<th>p % q</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

$$\text{gcd}(p, q) = \begin{cases} p & \text{if } q = 0 \\ \text{gcd}(q, p \% q) & \text{otherwise} \end{cases}$$

→ base case
→ reduction step, converges to base case

Java implementation.

```java
public static int gcd(int p, int q) {
    if (q == 0) return p;
    else return gcd(q, p % q);
}
```

→ base case
→ reduction step
Recursive Graphics
H-tree of order n.

- Draw an H.
- Recursively draw 4 H-trees of order $n-1$, one connected to each tip.
public class Htree {
 public static void draw(int n, double sz, double x, double y) {
 if (n == 0) return;
 double x0 = x - sz/2, x1 = x + sz/2;
 double y0 = y - sz/2, y1 = y + sz/2;
 StdDraw.line(x0, y, x1, y);
 StdDraw.line(x0, y0, x0, y1);
 StdDraw.line(x1, y0, x1, y1);
 draw(n-1, sz/2, x0, y0);
 draw(n-1, sz/2, x0, y1);
 draw(n-1, sz/2, x1, y0);
 draw(n-1, sz/2, x1, y1);
 }
}

public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 draw(n, .5, .5, .5);
}
Animated H-tree

Animated H-tree. Pause for 1 second after drawing each H.
Towers of Hanoi

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.
- Only one disc may be moved at a time.
- A disc can be placed either on empty peg or on top of a larger disc.

Towers of Hanoi demo

Towers of Hanoi demo

Edouard Lucas (1883)
Towers of Hanoi Legend

Q. Is world going to end (according to legend)?
 ■ 64 golden discs on 3 diamond pegs.
 ■ World ends when certain group of monks accomplish task.

Q. Will computer algorithms help?
Towers of Hanoi: Recursive Solution

1. Move n-1 smallest discs right.
2. Move largest disc left.
3. Move n-1 smallest discs right.
4. Move largest disc left.

Cyclic wrap-around
Towers of Hanoi: Recursive Solution

```java
public class TowersOfHanoi {

    public static void moves(int n, boolean left) {
        if (n == 0) return;
        moves(n-1, !left);
        if (left) System.out.println(n + " left");
        else System.out.println(n + " right");
        moves(n-1, !left);
    }

    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        moves(N, true);
    }
}
```

moves(n, true) : move discs 1 to n one pole to the left
moves(n, false): move discs 1 to n one pole to the right
Towers of Hanoi: Recursive Solution

% java TowersOfHanoi 3
1 left
2 right
1 left
3 left
1 left
2 right
1 left
% java TowersOfHanoi 4
1 right
2 left
1 right
3 right
1 right
2 left
1 right
4 left
1 right
2 left
1 right
3 right
1 right
2 left
1 right
subdivisions of ruler
every other move is smallest disc
Towers of Hanoi: Recursion Tree

3, true

2, false

1, true

2, false

1, true

n, left

1 left 2 right 1 left 3 left 1 left 2 right 1 left

1 left 2 right 1 left 3 left 1 left 2 right 1 left

1 left 2 right 1 left 3 left 1 left 2 right 1 left
Remarkable properties of recursive solution.

- Takes $2^n - 1$ moves to solve n disc problem.
- Sequence of discs is same as subdivisions of ruler.
- Every other move involves smallest disc.

Recursive algorithm yields non-recursive solution!

- Alternate between two moves:
 - move smallest disc to right if n is even
 - make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.

- Takes 585 billion years for $n = 64$ (at rate of 1 disc per second).
- Reassuring fact: any solution takes at least this long!
Divide-and-Conquer

Divide-and-conquer paradigm.
- Break up problem into smaller subproblems of same structure.
- Solve subproblems recursively using same method.
- Combine results to produce solution to original problem.

Many important problems succumb to divide-and-conquer.
- FFT for signal processing.
- Parsers for programming languages.
- Multigrid methods for solving PDEs.
- Quicksort and mergesort for sorting.
- Hilbert curve for domain decomposition.
- Quad-tree for efficient N-body simulation.
- Midpoint displacement method for fractional Brownian motion.

Divide et impera. Veni, vidi, vici. - Julius Caesar
Fibonacci Numbers
Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

\[
F(n) = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F(n-1) + F(n-2) & \text{otherwise}
\end{cases}
\]
Fibonacci Numbers and Nature

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

\[F(n) = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F(n-1) + F(n-2) & \text{otherwise} \end{cases} \]

pinecone
cauliflower
A Possible Pitfall With Recursion

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

\[F(n) = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F(n-1) + F(n-2) & \text{otherwise}
\end{cases} \]

A natural for recursion?

```java
public static long F(int n) {
    if (n == 0) return 0;
    if (n == 1) return 1;
    return F(n-1) + F(n-2);
}
```
Recursion Challenge 1 (difficult but important)

Q. Is this an efficient way to compute F(50)?

A. No, no, no! This code is spectacularly inefficient.

![Recursion Tree for Naïve Fibonacci Function](image)

- F(50) is called once.
- F(49) is called once.
- F(48) is called 2 times.
- F(47) is called 3 times.
- F(46) is called 5 times.
- F(45) is called 8 times.
- ...
- F(1) is called 12,586,269,025 times.
Recursion Challenge 2 (easy and also important)

Q. Is this a more efficient way to compute $F(50)$?

```
public static long F(int n) {
    long[] F = new long[n+1];
    F[0] = 0;
    F[1] = 1;
    for(int i = 2; i <= n; i++)
        F[i] = F[i-1] + F[i-2];
    return F[n];
}
```

A. Yes. This code does it with 50 additions.

Lesson. Don’t use recursion to engage in exponential waste.

Context. This is a special case of an important programming technique known as dynamic programming (stay tuned).

FYI: classic math

$$F(n) = \frac{\phi^n - (1-\phi)^n}{\sqrt{5}}$$

$$= \left\lfloor \frac{\phi^n}{\sqrt{5}} \right\rfloor$$

ϕ = golden ratio ≈ 1.618
Summary

How to write simple recursive programs?
- Base case, reduction step.
- Trace the execution of a recursive program.
- Use pictures.

Why learn recursion?
- New mode of thinking.
- Powerful programming tool.

Divide-and-conquer. Elegant solution to many important problems.
Extra Slides
Collatz Sequence

Collatz sequence.
- If \(n \) is 1, stop.
- If \(n \) is even, divide by 2.
- If \(n \) is odd, multiply by 3 and add 1.

Ex. 35 106 53 160 80 40 20 10 5 16 8 4 2 1.

```java
public static void collatz(int n) {
    System.out.print(n + " ");
    if (n == 1) return;
    if (n % 2 == 0) collatz(n / 2);
    collatz(3*n + 1);
}
```

The Collatz conjecture states that if you pick a number, and if it's even divide it by two and if it's odd multiply it by three and add one, and you repeat this procedure long enough, eventually your friends will stop calling to see if you want to hang out.
Fractional Brownian Motion
Fractional Brownian Motion

Physical process which models many natural and artificial phenomenon.
 - Price of stocks.
 - Dispersion of ink flowing in water.
 - Rugged shapes of mountains and clouds.
 - Fractal landscapes and textures for computer graphics.
Simulating Brownian Motion

Midpoint displacement method.
- Maintain an interval with endpoints \((x_0, y_0)\) and \((x_1, y_1)\).
- Divide the interval in half.
- Choose \(\delta\) at random from Gaussian distribution.
- Set \(x_m = (x_0 + x_1)/2\) and \(y_m = (y_0 + y_1)/2 + \delta\).
- Recur on the left and right intervals.
Midpoint displacement method.
- Maintain an interval with endpoints \((x_0, y_0)\) and \((x_1, y_1)\).
- Divide the interval in half.
- Choose \(\delta\) at random from Gaussian distribution.
- Set \(x_m = (x_0 + x_1)/2\) and \(y_m = (y_0 + y_1)/2 + \delta\).
- Recur on the left and right intervals.

```java
public static void curve(double x0, double y0,
                        double x1, double y1, double var) {
    if (x1 - x0 < 0.01) {
        StdDraw.line(x0, y0, x1, y1);
        return;
    }
    double xm = (x0 + x1) / 2;
    double ym = (y0 + y1) / 2;
    ym += StdRandom.gaussian(0, Math.sqrt(var));
    curve(x0, y0, xm, ym, var/2);
    curve(xm, ym, x1, y1, var/2); // variance halves at each level;
                                 // change factor to get different shapes
}
```
Plasma Cloud

Plasma cloud centered at \((x, y)\) of size \(s\).
- Each corner labeled with some grayscale value.
- Divide square into four quadrants.
- The grayscale of each new corner is the average of others.
 - center: average of the four corners + random displacement
 - others: average of two original corners
- Recur on the four quadrants.
Plasma Cloud
Brownian Landscape