CS 112 Introduction to Programming
(Spring 2012)

Lecture #17: Dynamic Programming
Zhong Shao

Department of Computer Science
Yale University
Office: 314 Watson

http://flint.cs.yale.edu/cs112

Acknowledgements: some slides used in this class are taken directly or adapted from those accompanying the textbook: Introduction to Programming in Java: An Interdisciplinary Approach by Robert Sedgewick and Kevin Wayne (Copyright 2002-2010)
A Possible Pitfall With Recursion

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

\[
F(n) = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F(n-1) + F(n-2) & \text{otherwise}
\end{cases}
\]

A natural for recursion?

```java
public static long F(int n) {
    if (n == 0) return 0;
    if (n == 1) return 1;
    return F(n - 1) + F(n - 2);
}
```
Recursion Challenge 1 (difficult but important)

Q. Is this an efficient way to compute $F(50)$?

```java
public static long F(int n) {
    if (n == 0) return 0;
    if (n == 1) return 1;
    return F(n-1) + F(n-2);
}
```

A. No, no, no! This code is **spectacularly inefficient**.

Recursion tree for naïve Fibonacci function:

- $F(50)$ is called once.
- $F(49)$ is called once.
- $F(48)$ is called 2 times.
- $F(47)$ is called 3 times.
- $F(46)$ is called 5 times.
- $F(45)$ is called 8 times.
- ...$F(1)$ is called 12,586,269,025 times.

F(50)
Recursion Challenge 2 (easy and also important)

Q. Is this a more efficient way to compute F(50)?

```java
public static long F(int n) {
    long[] F = new long[n+1];
    F[0] = 0;
    F[1] = 1;
    for(int i = 2; i <= n; i++)
        F[i] = F[i-1] + F[i-2];
    return F[n];
}
```

A. Yes. This code does it with 50 additions.
Lesson. Don’t use recursion to engage in exponential waste.

Context. This is a special case of an important programming technique known as dynamic programming.
Binomial Coefficients

Binomial coefficient. \(\binom{n}{k} \) = number of ways to choose \(k \) of \(n \) elements.

Ex. Number of possible 7-card poker hands = \(\binom{52}{7} = 2,598,960 \).

Ex. Probability of "quads" in Texas hold 'em:

\[
\frac{13}{\binom{52}{1}} \cdot \frac{4}{\binom{4}{4}} \cdot \frac{48}{\binom{4}{3}} = \frac{224,848}{133,784,560} \quad \text{(about 594 : 1)}
\]
Binomial Coefficients

Binomial coefficient. \(\binom{n}{k} \) = number of ways to choose \(k \) of \(n \) elements.

Pascal's identity. \[
\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}
\]

contains first element \hspace{0.5cm} excludes first element

Pascal's triangle.
Binomial Coefficients: Sierpinski Triangle

Binomial coefficient. \(\binom{n}{k} = \) number of ways to choose \(k \) of \(n \) elements.

Sierpinski triangle. Color black the odd integers in Pascal's triangle.
public class SlowBinomial {

 // natural recursive implementation
 public static long binomial(long n, long k) {
 if (k == 0) return 1;
 if (n == 0) return 0;
 return binomial(n - 1, k - 1) + binomial(n - 1, k);
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 int K = Integer.parseInt(args[1]);
 StdOut.println(binomial(N, K));
 }
}
Q. Is this an efficient way to compute binomial coefficients?
A. No, no, no! [same essential recomputation flaw as naïve Fibonacci]
Timing experiments: direct recursive solution.

<table>
<thead>
<tr>
<th>$(2N, N)$</th>
<th>time \uparrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(26, 13)</td>
<td>0.46</td>
</tr>
<tr>
<td>(28, 14)</td>
<td>1.27</td>
</tr>
<tr>
<td>(30, 15)</td>
<td>4.30</td>
</tr>
<tr>
<td>(32, 16)</td>
<td>15.69</td>
</tr>
<tr>
<td>(34, 17)</td>
<td>57.40</td>
</tr>
<tr>
<td>(36, 18)</td>
<td>230.42</td>
</tr>
</tbody>
</table>

increase N by 1, running time increases by about 4x

Q. Is running time linear, quadratic, cubic, exponential in N?
Let $F(N)$ be running time to compute $\text{binomial}(2N, N)$.

```java
public static long binomial(long n, long k) {
    if (k == 0) return 1;
    if (n == 0) return 0;
    return binomial(n-1, k-1) + binomial(n-1, k);
}
```

Observation. $F(N+1) / F(N)$ converges to about 4.

Q. What is order of growth of the running time?

A. Exponential: $a 4^N$. \(\text{will not finish unless } N \text{ is small}\)
Dynamic Programming

Key idea. Save solutions to subproblems to avoid recomputation.

\[
\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}
\]

\[
20 = 10 + 10
\]

\[
\binomial(n, k)
\]

Tradeoff. Trade (a little) memory for (a huge amount of) time.
public class Binomial {
 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 int K = Integer.parseInt(args[1]);
 long[][] bin = new long[N+1][K+1];

 // base cases
 for (int k = 1; k <= K; k++) bin[0][k] = 0;
 for (int n = 0; n <= N; n++) bin[n][0] = 1;

 // bottom-up dynamic programming
 for (int n = 1; n <= N; n++)
 for (int k = 1; k <= K; k++)
 bin[n][k] = bin[n-1][k-1] + bin[n-1][k];

 // print results
 StdOut.println(bin[N][K]);
 }
}
Timing experiments for binomial coefficients via dynamic programming.

<table>
<thead>
<tr>
<th>(2N, N)</th>
<th>time †</th>
</tr>
</thead>
<tbody>
<tr>
<td>(26, 13)</td>
<td>instant</td>
</tr>
<tr>
<td>(28, 14)</td>
<td>instant</td>
</tr>
<tr>
<td>(30, 15)</td>
<td>instant</td>
</tr>
<tr>
<td>(32, 16)</td>
<td>instant</td>
</tr>
<tr>
<td>(34, 17)</td>
<td>instant</td>
</tr>
<tr>
<td>(36, 18)</td>
<td>instant</td>
</tr>
</tbody>
</table>

Q. Is running time linear, quadratic, cubic, exponential in N?
Performance Challenge 5

Let $F(N)$ be running time to compute $\text{binomial}(2N, N)$ using DP.

```java
for (int n = 1; n <= N; n++)
    for (int k = 1; k <= K; k++)
        bin[n][k] = bin[n-1][k-1] + bin[n-1][k];
```

Q. What is order of growth of the running time?

A. Quadratic: $a N^2$.

effectively instantaneous for small N

Remark. There is a profound difference between 4^N and N^2.

cannot solve a large problem
can solve a large problem
Biology Review

A genetic sequence is a string of four-letter alphabet
- Adenine (A), Thymine (T), Guanine (G), Cytosine

A gene is a genetic sequence that contains the information needed to construct a protein. All of your genes taken together are referred to as the human genome.

Examples:
- A A C A G T T A C C
- T A A G G T C A

Edit Distance: when are the two genetic sequences “similar” enough?
- also useful for spell checking, plagiarism detection, computational linguistics, and speech recognition.
Assignment 5 (cont’d)

Examples: \(x = A A C A G T T A C C \) \(y = T A A G G T C A \)

Edit-distance: the minimum number of editing steps (measured as “cost”) required to go from one string to another

<table>
<thead>
<tr>
<th>operation</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert a gap</td>
<td>2</td>
</tr>
<tr>
<td>align two characters that mismatch</td>
<td>1</td>
</tr>
<tr>
<td>align two characters that match</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\begin{array}{ccc}
\text{x} & \text{y} & \text{cost} \\
A & T & 1 \\
A & A & 0 \\
C & A & 1 \\
A & G & 1 \\
G & G & 0 \\
T & T & 0 \\
T & C & 1 \\
A & A & 0 \\
C & - & 2 \\
C & - & 2 \\
\hline
\text{---} & \text{---} & \text{---} \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{x} & \text{y} & \text{cost} \\
A & T & 1 \\
A & A & 0 \\
C & - & 2 \\
A & A & 0 \\
C & C & 0 \\
C & A & 1 \\
\hline
\text{---} & \text{---} & \text{---} \\
\end{array}
\]

8

7
Assignment 5 (cont’d)

How to calculate the edit distance?

- Recurse on the suffixes of the two strings \(x[0..M] \) and \(y[0..N] \)
- Notations: \(x[i] \) character \(i \) of the string \(x \).
- \(x[i..M] \): the suffix of string \(x \) consisting of characters \(x[i], \ldots x[M-1] \)
- \(y[j..N] \): the suffix of string \(y \) consisting of characters \(y[j], \ldots y[N-1] \)
- \(\text{opt}[i][j] \) will store the edit distance between \(x[i..M] \) and \(y[j..N] \)

Calculating things backwards ...

- if we do not insert any gap,
 \[
 \text{opt}[i][j] = \text{opt}[i+1][j+1] \quad \text{if} \quad x[i] == y[j] \\
 \text{opt}[i][j] = \text{opt}[i+1][j+1] + 1 \quad \text{if} \quad x[i] <> y[j]
 \]

- if we insert a gap btw \(x[i] \) and \(x[i+1] \),
 \[
 \text{opt}[i][j] = \text{opt}[i][j+1] + 2
 \]

- if we insert a gap btw \(y[j] \) and \(y[j+1] \),
 \[
 \text{opt}[i][j] = \text{opt}[i+1][j] + 2
 \]
Assignment 5 (cont’d)

\[\text{opt}[i][j] = \min \{ \text{opt}[i+1][j+1] + (0 \text{ or } 1), \]
\[\text{opt}[i+1][j] + 2, \text{opt}[i][j+1] + 2 \} \]

Base case: \[\text{opt}[M][j] = 2(N-j) \quad \text{and} \quad \text{opt}[i][N] = 2(M-i) \]

<table>
<thead>
<tr>
<th>x\y</th>
<th>0 1 2 3 4 5 6 7 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>A A A G G T C A -</td>
</tr>
<tr>
<td>A</td>
<td>7 8 10 12 13 15 16 18 20</td>
</tr>
<tr>
<td>A</td>
<td>6 6 8 10 11 13 14 16 18</td>
</tr>
<tr>
<td>C</td>
<td>6 5 6 8 9 11 12 14 16</td>
</tr>
<tr>
<td>A</td>
<td>7 5 4 6 7 9 11 12 14</td>
</tr>
<tr>
<td>G</td>
<td>9 7 5 4 5 7 9 10 12</td>
</tr>
<tr>
<td>T</td>
<td>8 8 6 4 4 5 7 8 10</td>
</tr>
<tr>
<td>T</td>
<td>9 8 7 5 3 3 5 6 8</td>
</tr>
<tr>
<td>A</td>
<td>11 9 7 6 4 2 3 4 6</td>
</tr>
<tr>
<td>C</td>
<td>13 11 9 7 5 3 1 3 4</td>
</tr>
<tr>
<td>C</td>
<td>14 12 10 8 6 4 2 1 2</td>
</tr>
<tr>
<td>-</td>
<td>16 14 12 10 8 6 4 2 0</td>
</tr>
</tbody>
</table>