CS 112 Introduction to Programming
(Spring 2012)

Lecture #24: Performance
Zhong Shao
Department of Computer Science
Yale University
Office: 314 Watson
http://flint.cs.yale.edu/cs112

Acknowledgements: some slides used in this class are taken directly or adapted from those accompanying the textbook Introduction to Programming in Java An Interdisciplinary Approach by Robert Sedgewick and Kevin Wayne (Copyright 2002-2010)

Running Time

“As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise —by what course of calculation can these results be arrived at by the machine in the shortest time?” — Charles Babbage

Scientific Method

Scientific method.

Observe some feature of the natural world.

Hypothesize a model that is consistent with the observations.

Predict events using the hypothesis.

Verify the predictions by making further observations.

Validate by repeating until the hypothesis and observations agree.

Principles.

Experiments must be reproducible.

Hypothesis must be falsifiable.

The Challenge

Q. Will my program be able to solve a large practical problem?

Key insight. [Knuth 1970s]

Use the scientific method to understand performance.
Reasons to Analyze Algorithms

Predict performance.
 • Will my program finish?
 • When will my program finish?

Compare algorithms.
 • Will this change make my program faster?
 • How can I make my program faster?

Basis for inventing new ways to solve problems.
 • Enables new technology.
 • Enables new research.

Algorithmic Successes

Sorting.
 • Rearrange array of \(N \) items in ascending order.
 • Applications: databases, scheduling, statistics, genomics, ...
 • Brute force: \(N^2 \) steps.
 • Mergesort: \(N \log N \) steps, enables new technology.

Discrete Fourier transform.
 • Break down waveform of \(N \) samples into periodic components.
 • Applications: DVD, JPEG, MRI, astrophysics, ...
 • Brute force: \(N^2 \) steps.
 • FFT algorithm: \(N \log N \) steps, enables new technology.

\(N \)-body Simulation.
 • Simulate gravitational interactions among \(N \) bodies.
 • Application: cosmology, semiconductors, fluid dynamics, ...
 • Brute force: \(N^2 \) steps.
 • Barnes-Hut algorithm: \(N \log N \) steps, enables new research.
Three-Sum Problem

Three-sum problem. Given N integers, how many triples sum to 0?

Context. Deeply related to problems in computational geometry.

Q. How would you write a program to solve the problem?

```java
public class ThreeSum {
    public static int count(int[] a) {
        int N = a.length;
        int cnt = 0;
        for (int i = 0; i < N; i++)
            for (int j = i + 1; j < N; j++)
                for (int k = j + 1; k < N; k++)
                    if (a[i] + a[j] + a[k] == 0) cnt++;
        return cnt;
    }

    public static void main(String[] args) {
        int[] a = StdArrayIO.readInt1D();
        StdOut.println(count(a));
    }
}
```

Empirical Analysis

Empirical analysis. Run the program for various input sizes.

<table>
<thead>
<tr>
<th>N</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>0.03</td>
</tr>
<tr>
<td>1,024</td>
<td>0.26</td>
</tr>
<tr>
<td>2,048</td>
<td>2.16</td>
</tr>
<tr>
<td>4,096</td>
<td>17.18</td>
</tr>
<tr>
<td>8,192</td>
<td>136.76</td>
</tr>
</tbody>
</table>

† Running Linux on Sun-Fire-X4100 with 16GB RAM.

Caveat. If N is too small, you will measure mainly noise.
Stopwatch

Q. How to time a program?
A. A stopwatch.

```java
public static void main(String[] args) {
    int[] a = StdArrayIO.readInt1D();
    Stopwatch timer = new Stopwatch();
    StdOut.println(count(a));
    StdOut.println(timer.elapsedTime());
}
```

Data analysis. Plot running time vs. input size N.

Q. How fast does running time grow as a function of input size N?

Empirical Analysis
Empirical Analysis

Initial hypothesis. Running time approximately obeys a power law $T(N) = aN^b$.

Data analysis. Plot running time vs. input size N on a log-log scale.

Consequence. Power law yields straight line.

Refined hypothesis. Running time grows as cube of input size: aN^3.

Doubling Hypothesis

Doubling hypothesis. Quick way to estimate b in a power law hypothesis.

Run program, doubling the size of the input?

<table>
<thead>
<tr>
<th>N</th>
<th>time $T(N)$</th>
<th>ratio $\frac{T(2N)}{T(N)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>0.033</td>
<td>-</td>
</tr>
<tr>
<td>1,024</td>
<td>0.26</td>
<td>7.88</td>
</tr>
<tr>
<td>2,048</td>
<td>2.16</td>
<td>8.43</td>
</tr>
<tr>
<td>4,096</td>
<td>17.18</td>
<td>7.96</td>
</tr>
<tr>
<td>8,192</td>
<td>136.76</td>
<td>7.96</td>
</tr>
</tbody>
</table>

Hypothesis. Running time is about aN^b with $b = \lg c$.

Performance Challenge 1

Let $T(N)$ be running time of `main()` as a function of input size N.

```java
public static void main(String[] args) {
    ...
    int N = Integer.parseInt(args[0]);
    ...
}
```

Scenario 1. $T(2N) / T(N)$ converges to about 4.

Q. What is order of growth of the running time?

1. N
2. N^2
3. N^3
4. N^4
5. 2^N

Performance Challenge 2

Let $T(N)$ be running time of `main()` as a function of input size N.

```java
public static void main(String[] args) {
    ...
    int N = Integer.parseInt(args[0]);
    ...
}
```

Scenario 2. $T(2N) / T(N)$ converges to about 2.

Q. What is order of growth of the running time?

1. N
2. N^2
3. N^3
4. N^4
5. 2^N
Prediction and Validation

Hypothesis. Running time is about $a N^3$ for input of size N.

Q. How to estimate a?

A. Run the program!

<table>
<thead>
<tr>
<th>N</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096</td>
<td>17.18</td>
</tr>
<tr>
<td>4096</td>
<td>17.15</td>
</tr>
<tr>
<td>4096</td>
<td>17.17</td>
</tr>
</tbody>
</table>

Refined hypothesis. Running time is about $17.17 = 4096^{1} \times 2.5 \times 10^{-10} \times N^3$ seconds.

Prediction. 1,100 seconds for $N = 16,384$.

Observation.

<table>
<thead>
<tr>
<th>N</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16384</td>
<td>1118.86</td>
</tr>
</tbody>
</table>

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and weight by its execution time.

```c
int count = 0;
for (int i = 0; i < N; i++)
    if (a[i] == 0) count++;
```

Operation	**Frequency**
variable declaration | 2
variable assignment | 2
less than comparison | $N + 1$
equal to comparison | N
array access | N
increment | $a \times 2N$

between N (no zeros) and $2N$ (all zeros)

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and weight by its execution time.

```c
int count = 0;
for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++)
        if (a[i] + a[j] == 0) count++;
```

Operation	**Frequency**
variable declaration | $N + 2$
variable assignment | $N + 2$
less than comparison | $1/2(N^2 + N - 2)$
equal to comparison | $1/2 N (N - 1)$
array access | $N (N - 1)$
increment | $a \times N^2$

becoming very tedious to count

Mathematical Analysis

Donald Knuth

Turing award '74
Tilde Notation

- **Tilde notation.**
 - Estimate running time as a function of input size N.
 - Ignore lower order terms.
 - when N is large, terms are negligible
 - when N is small, we don’t care

Ex 1. $6N^3 + 17N^2 + 56 \sim 6N^3$

Ex 2. $6N^3 + 100N^{4/3} + 56 \sim 6N^3$

Ex 3. $6N^3 + 17N^2 \log N \sim 6N^3$

discard lower order terms (e.g., $N = 1000$: 6 trillion vs. 159 million)

Technical definition. $f(N) \sim g(N)$ means $\lim_{N \to \infty} \frac{f(N)}{g(N)} = 1$

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and weight by its execution time.

```java
public static int count(int[] a) {
    int N = a.length;
    int cnt = 0;
    for (int i = 0; i < N; i++)
        for (int j = 1; j < N; j++)
            if (a[i] + a[j] + a[k] == 0)
                cnt++;
    return cnt;
}
```

Inner loop. Focus on instructions in “inner loop.”

Constants in Power Law

- **Power law.** Running time of a typical program is $\sim aN^b$.
- **Exponent b depends on:** algorithm.
- **Leading constant a depends on:**
 - Algorithm.
 - Input data.
 - Caching.
 - Machine.
 - Compiler.
 - Garbage collection.
 - Just-in-time compilation.
 - CPU use by other applications.

System independent effects

System dependent effects

Our approach. Use doubling hypothesis (or mathematical analysis) to estimate exponent b, run experiments to estimate a.

Analysis: Empirical vs. Mathematical

- **Empirical analysis.**
 - Measure running times, plot, and fit curve.
 - Easy to perform experiments.
 - Model useful for predicting, but not for explaining.

- **Mathematical analysis.**
 - Analyze *algorithm* to estimate # ops as a function of input size.
 - May require advanced mathematics.
 - Model useful for predicting and explaining.

Critical difference. Mathematical analysis is independent of a particular machine or compiler; applies to machines not yet built.
Order of Growth Classifications

Observation. A small subset of mathematical functions suffice to describe running time of many fundamental algorithms.

- **Linear (N):**
  ```java
  for (int i = 0; i < N; i++)
  ...
  ``

- **Quadratic (N^2):**
  ```java
 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 ...
 ``

- **Exponential (2^N):**
  ```java
  public static void f(int N) {
  if (N == 0) return;
  f(N-1);
  f(N-1);
  ...
  }
  ``

- **Logarithmic (lg N):**
  ```java
 while (N > 1) {
 N = N / 2;
 ...
 }
 ``

- **Linearithmic (N lg N):**
  ```java
  public static void g(int N) {
  if (N == 0) return;
  g(N/2);
  g(N/2);
  ...
  }
  ``

Order of Growth: Consequences

<table>
<thead>
<tr>
<th>Order of Growth</th>
<th>Predicted Running Time if Problem Size is Increased by a Factor of 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>A few minutes</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>A few minutes</td>
</tr>
<tr>
<td>Quadratic</td>
<td>Several hours</td>
</tr>
<tr>
<td>Cubic</td>
<td>A few weeks</td>
</tr>
<tr>
<td>Exponential</td>
<td>Forever</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order of Growth</th>
<th>Predicted Factor of Problem Size Increase if Computer Speed is Increased by a Factor of 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>10</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>10</td>
</tr>
<tr>
<td>Quadratic</td>
<td>3-4</td>
</tr>
<tr>
<td>Cubic</td>
<td>2-3</td>
</tr>
<tr>
<td>Exponential</td>
<td>1</td>
</tr>
</tbody>
</table>

Effect of increasing problem size for a program that runs for a few seconds

Effect of increasing computer speed on problem size that can be solved in a fixed amount of time

Memory
Typical Memory Requirements for Primitive Types

Bit. 0 or 1.
Byte. 8 bits.
Megabyte (MB). 1 million bytes \( \sim 2^{20} \) bytes.
Gigabyte (GB). 1 billion bytes \( \sim 2^{30} \) bytes.

<table>
<thead>
<tr>
<th>type</th>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>1</td>
</tr>
<tr>
<td>byte</td>
<td>1</td>
</tr>
<tr>
<td>char</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>8</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
</tr>
</tbody>
</table>

Q. How much memory (in bytes) does your computer have?

Q. How much memory (in bytes) does your computer have?

Typical Memory Requirements for Reference Types

Memory of an object.
- Memory for each instance variable, plus

<table>
<thead>
<tr>
<th>Charge object</th>
</tr>
</thead>
<tbody>
<tr>
<td>public class Charge</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Object overhead = 8 bytes on a 32-bit machine.

16 bytes on a 64-bit machine

Memory of a reference. 4 byte pointer on a 32-bit machine.

Memory of a reference. 8 byte pointer on a 64-bit machine.

<table>
<thead>
<tr>
<th>32 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>double</td>
</tr>
</tbody>
</table>

Typical Memory Requirements for Array Types

Memory of an array.
- Memory for each array entry.

<table>
<thead>
<tr>
<th>type</th>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>int[]</td>
<td>4N + 16</td>
</tr>
<tr>
<td>double[]</td>
<td>8N + 16</td>
</tr>
<tr>
<td>Charge[]</td>
<td>36N + 16</td>
</tr>
<tr>
<td>int[][]</td>
<td>4N^2 + 20N + 16</td>
</tr>
<tr>
<td>double[][]</td>
<td>8N^2 + 20N + 16</td>
</tr>
<tr>
<td>String</td>
<td>2N + 40</td>
</tr>
</tbody>
</table>

24 bytes on a 64-bit machine

Q. What’s the biggest double[][] array you can store on your computer?

Summary

Q. How can I evaluate the performance of my program?
A. Computational experiments, mathematical analysis, scientific method.

Q. What if it’s not fast enough? Not enough memory?
- Understand why.
- Buy a faster computer or more memory.
- Learn a better algorithm. see CS 223
- Discover a new algorithm. see CS 365
- Attribute. better machine. better algorithm
  - cost
    - $$$ or more
    - $ or less
  - applicability
    - makes “everything” run faster
    - does not apply to some problems
  - improvement
    - quantitative improvements
    - dramatic qualitative improvements possible
Dynamic Programming

Binomial Coefficients

Binomial coefficient \( \binom{n}{k} \) = number of ways to choose \( k \) of \( n \) elements.

**Ex.** Number of possible 7-card poker hands = \( \binom{52}{7} \) = 2,598,960.

**Ex.** Probability of "quads" in Texas hold ’em:

\[
\binom{13}{4} \cdot \binom{48}{3} \binom{7}{1} \quad = \quad \frac{224,448}{137,749,560} \quad \text{(about 594:1)}
\]

Binomial Coefficients: First Attempt

```java
public class SlowBinomial {
 // natural recursive implementation
 public static long binomial(int n, int k) {
 if (k == 0) return 1;
 if (n == 0) return 0;
 return binomial(n - 1, k - 1) + binomial(n - 1, k);
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 int K = Integer.parseInt(args[1]);
 StdOut.println(binomial(N, K));
 }
}
```
Performance Challenge 3

**Q.** Is this an efficient way to compute binomial coefficients?

**A.** No, no, no! [same essential recomputation flaw as naïve Fibonacci]

Timing Experiments

**Q.** Is running time linear, quadratic, cubic, exponential in N?

**A.** Exponential: $4^N$.

Dynamic Programming

**Key idea.** Save solutions to subproblems to avoid recomputation.

**Tradeoff.** Trade (a little) memory for (a huge amount of) time.
Binomial Coefficients: Dynamic Programming

```java
public class Binomial {
 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 int K = Integer.parseInt(args[1]);
 long[][] bin = new long[N+1][K+1];

 // base cases
 for (int k = 1; k <= K; k++) bin[0][K] = 0;
 for (int n = 0; n <= N; n++) bin[N][0] = 1;

 // bottom-up dynamic programming
 for (int n = 1; n <= N; n++)
 for (int k = 1; k <= K; k++)
 bin[n][k] = bin[n-1][k-1] + bin[n-1][k];

 // print results
 StdOut.println(bin[N][K]);
 }
}
```

Timing Experiments

Timing experiments for binomial coefficients via dynamic programming.

<table>
<thead>
<tr>
<th>(N, K)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(25, 5)</td>
<td></td>
</tr>
<tr>
<td>(26, 13)</td>
<td>instant</td>
</tr>
<tr>
<td>(28, 14)</td>
<td>instant</td>
</tr>
<tr>
<td>(30, 15)</td>
<td>instant</td>
</tr>
<tr>
<td>(32, 16)</td>
<td>instant</td>
</tr>
<tr>
<td>(34, 17)</td>
<td>instant</td>
</tr>
<tr>
<td>(36, 18)</td>
<td>instant</td>
</tr>
</tbody>
</table>

Q. Is running time linear, quadratic, cubic, exponential in N?

Performance Challenge 5

Let F(N) be running time to compute \( \binom{2N}{N} \) using DP.

```java
for (int n = 1; n <= N; n++)
 for (int k = 1; k <= K; k++)
 bin[n][k] = bin[n-1][k-1] + bin[n-1][k];
```

Q. What is order of growth of the running time?

A. Quadratic: \( aN^2 \).

Remark. There is a profound difference between \( 4^N \) and \( N^2 \).