CS 112 Introduction to Programming
(Spring 2012)

Lecture #29: Small World Phenomenon

Zhong Shao

Department of Computer Science
Yale University
Office: 314 Watson

http://flint.cs.yale.edu/cs112

Acknowledgements: some slides used in this class are taken directly or adapted from those accompanying the textbook: Introduction to Programming in Java: An Interdisciplinary Approach by Robert Sedgewick and Kevin Wayne (Copyright 2002-2010)
Small World Phenomenon

Small world phenomenon. Six handshakes away from anyone.

An experiment to quantify effect. [Stanley Milgram, 1960s]
- You are given personal info of another person.
- Goal: deliver message.
- Restriction: can only forward to someone you know by first name.
- Outcome: message delivered with average of 5 intermediaries.

Stanley Milgram Kevin Bacon
Applications of Small World Phenomenon

Sociology applications.
- Looking for a job.
- Marketing products or ideas.
- Formation and spread of fame and fads.
- Train of thought followed in a conversation.
- Defining representative-ness of political bodies.
- Kevin Bacon game (movies, rock groups, facebook, etc.).

Other applications.
- Electronic circuits.
- Synchronization of neurons.
- Analysis of World Wide Web.
- Design of electrical power grids.
- Modeling of protein interaction networks.
- Phase transitions in coupled Kuramoto oscillators.
- Spread of infectious diseases and computer viruses.
- Evolution of cooperation in multi-player iterated Prisoner’s Dilemma.
Graph Data Type

Application demands a new data type.

- **Graph** = data type that represents pairwise connections.
- **Vertex** = element.
- **Edge** = connection between two vertices.
Graph Applications

<table>
<thead>
<tr>
<th>graph</th>
<th>vertices</th>
<th>edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>communication</td>
<td>telephones, computers</td>
<td>fiber optic cables</td>
</tr>
<tr>
<td>circuits</td>
<td>gates, registers, processors</td>
<td>wires</td>
</tr>
<tr>
<td>mechanical</td>
<td>joints</td>
<td>rods, beams, springs</td>
</tr>
<tr>
<td>hydraulic</td>
<td>reservoirs, pumping stations</td>
<td>pipelines</td>
</tr>
<tr>
<td>financial</td>
<td>stocks, currency</td>
<td>transactions</td>
</tr>
<tr>
<td>transportation</td>
<td>street intersections, airports</td>
<td>highways, airway routes</td>
</tr>
<tr>
<td>scheduling</td>
<td>tasks</td>
<td>precedence constraints</td>
</tr>
<tr>
<td>software systems</td>
<td>functions</td>
<td>function calls</td>
</tr>
<tr>
<td>internet</td>
<td>web pages</td>
<td>hyperlinks</td>
</tr>
<tr>
<td>games</td>
<td>board positions</td>
<td>legal moves</td>
</tr>
<tr>
<td>social relationship</td>
<td>people, actors</td>
<td>friendships, movie casts</td>
</tr>
<tr>
<td>neural networks</td>
<td>neurons</td>
<td>synapses</td>
</tr>
<tr>
<td>protein networks</td>
<td>proteins</td>
<td>protein-protein interactions</td>
</tr>
<tr>
<td>chemical compounds</td>
<td>molecules</td>
<td>bonds</td>
</tr>
</tbody>
</table>
Kissing Network

Reference: Cosmopolitan, Nov. 2000
One Week of Enron Emails

Finding Patterns In Corporate Chatter

Computer scientists are analyzing about a half million Enron e-mails. Here is a map of a week's e-mail patterns in May 2001, when a new name suddenly appeared. Scientists found that this week's pattern differed greatly from others, suggesting different conversations were taking place that might interest investigators. Next step: word analysis of these messages.
The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010
Protein Interaction Network

Reference: Jeong et al, Nature Review | Genetics
ARPANET

ARPANET LOGICAL MAP, MARCH 1977

PLEASE NOTE THAT WHILE THIS MAP SHOWS THE HOST POPULATION OF THE NETWORK ACCORDING TO THE BEST INFORMATION OBTAINABLE, NO CLAIM CAN BE MADE FOR ITS ACCURACY.

NAMES SHOWN ARE IMP NAMES, NOT (NECESSARILY) HOST NAMES.
The Internet

The Internet as mapped by The Opte Project
http://www.opte.org
Internet Movie Database

Input format. Movie followed by list of performers, separated by slashes.

% more movies.txt
...
Tin Men (1987)/DeBoy, David/Blumenfeld, Alan/.../Geppi, Cindy/Hershey, Barbara
Tirez sur le pianiste (1960)/Heymann, Claude/.../Berger, Nicole (I)
Titanic (1997)/Paxton, Bill/DiCaprio, Leonardo/.../Winslet, Kate
Titus (1999)/Weisskopf, Hermann/Rhys, Matthew/.../McEwan, Geraldine
To All a Good Night (1980)/George, Michael (II)/.../Gentile, Linda
To Be or Not to Be (1942)/Verebes, Ernô (I)/.../Lombard, Carole (I)
To Be or Not to Be (1983)/Brooks, Mel (I)/.../Bancroft, Anne
To Catch a Thief (1955)/Paris, Manuel/Grant, Cary/.../Kelly, Grace
To Die For (1989)/Bond, Steve (I)/Jones, Duane (I)/.../Maddalena, Julie
To Die For (1995)/Smith, Kurtwood/Kidman, Nicole/.../Tucci, Maria
To Die Standing (1990)/Sacha, Orlando/Anthony, Gerald/.../Rose, Jamie
To End All Wars (2001)/Kimura, Sakae/Ellis, Greg (II)/.../Sutherland, Kiefer
To Kill a Clown (1972)/Alda, Alan/Clavering, Eric/Lamberts, Heath/Danner, Blythe
To Live and Die in L.A. (1985)/McGroarty, Pat/Williams, Donnie/.../Dafoe, Willem
...

http://www.imdb.com/interfaces
Q. How to represent the movie-performer relationships?
A. Use a graph.
- Vertex: performer or movie.
- Edge: connect performer to movie.
Graph API

Graph data type.

```java
public class Graph (graph with String vertices)
{
    Graph()
    Graph(In in)
    void addEdge(String v, String w)
    Iterable<String> adjacentTo(String v)
}
```

- create an empty graph
- read graph from input stream
- add edge v-w
- neighbors of v

% more tiny.txt
A/B/I
B/A/F
C/D/G/H
D/C
E/F/I
F/B/E/G
G/C/F/H
H/C/G
I/A/E/F

to support use with foreach
Graph Representation

Graph representation: use a symbol table.
- Key = name of vertex.
- Value = set of neighbors.

```
<table>
<thead>
<tr>
<th>key</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B I</td>
</tr>
<tr>
<td>B</td>
<td>A F</td>
</tr>
<tr>
<td>C</td>
<td>D G H</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>I F</td>
</tr>
<tr>
<td>F</td>
<td>E B G I</td>
</tr>
<tr>
<td>G</td>
<td>C F H</td>
</tr>
<tr>
<td>H</td>
<td>C G</td>
</tr>
<tr>
<td>I</td>
<td>A E F</td>
</tr>
</tbody>
</table>
```

symbol table
Set Data Type

Set data type. Unordered collection of distinct keys.

```
public class SET<Key extends Comparable<Key>>

    SET()                     // create a set
    boolean isEmpty()        // is the set empty?
    void add(Key key)        // add key to the set
    boolean contains(Key key) // is key in the set?

Note: Implementations should also implement the Iterable<Key> interface to enable clients to access keys in sorted order with foreach loops
```

Q. How to implement?
A. Identical to symbol table, but ignore values.
public class Graph {
 private ST<String, SET<String>> st;

 public Graph() {
 st = new ST<String, SET<String>>();
 }

 public void addEdge(String v, String w) {
 if (!st.contains(v)) addVertex(v);
 if (!st.contains(w)) addVertex(w);
 st.get(v).add(w); // add w to v’s set of neighbors
 st.get(w).add(v); // add v to w’s set of neighbors
 }

 private void addVertex(String v) {
 st.put(v, new SET<String>()); // add new vertex v with no neighbors
 }

 public Iterable<String> adjacento(String v) {
 return st.get(v);
 }
}
Second constructor. To read graph from input stream.

```java
public Graph(In in) {
    st = new ST<String, SET<String>>();
    while (!in.isEmpty()) {
        String line = in.readLine();
        String[] names = line.split("/");
        for (int i = 1; i < names.length; i++)
           .addEdge(names[0], names[i]);
    }
}
```

```java
In in = new In("tiny.txt");
Graph G = new Graph(G, in);
```

% more tiny.txt
A/B/I
B/A/F
C/D/G/H
D/C
E/F/I
F/B/E/G
G/C/F/H
H/C/G
I/A/E/F
Performers and movie queries.
- Given a performer, find all movies in which they appeared.
- Given a movie, find all performers.

```
public class MovieFinder {
    public static void main(String[] args) {
        In in = new In(args[0]);
        Graph G = new Graph(in);

        while (!StdIn.isEmpty()) {
            String v = StdIn.readLine();
            for (String w : G.adjacentTo(v))
                StdOut.println(w);
        }
    }
}
```
Graph Client: Movie Finder

% java MovieFinder action.txt
Bacon, Kevin
Death Sentence (2007)
Tremors (1990)

Roberts, Julia
I Love Trouble (1994)
Mexican, The (2001)
Ocean's Eleven (2001)

Tilghman, Shirley

% java MovieFinder mpaa.txt
Bacon, Kevin
Air I Breathe, The (2007)
Air Up There, The (1994)
Animal House (1978)
Apollo 13 (1995)
Balto (1995)
Beauty Shop (2005)
Big Picture, The (1989)
...
Sleepers (1996)
Starting Over (1979)
Stir of Echoes (1999)
Telling Lies in America (1997)
Trapped (2002)
Tremors (1990)
We Married Margo (2000)
Where the Truth Lies (2005)
White Water Summer (1987)
Wild Things (1998)
Kevin Bacon Numbers

Tim Curry was in "The Rocky Horror Picture Show" with Susan Sarandon

Susan Sarandon was in "Bull Durham" with Kevin Costner

Kevin Costner was in "JFK" with Kevin Bacon

Tom Cruise was in "A Few Good Men" with Kevin Bacon

Tim Curry was in "Legend" with Tom Cruise
Oracle of Kevin Bacon

The Oracle of Bacon

Buzz Mauro
Sweet Dreams (2005)
Tatiana Ramirez
Interior de un silencio, El (2005)
Andres Suarez
Carlita’s Secret (2004)
Paula Lemes (I)
Frost/Nixon (2008)
Kevin Bacon

Kevin Bacon to Buzz Mauro
Find link
More options >>
Kevin Bacon Game

Game. Find (shortest) chain of movies connecting a performer to Kevin Bacon.

<table>
<thead>
<tr>
<th>performer</th>
<th>was in</th>
<th>with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kevin Kline</td>
<td>French Kiss</td>
<td>Meg Ryan</td>
</tr>
<tr>
<td>Meg Ryan</td>
<td>Sleepless in Seattle</td>
<td>Tom Hanks</td>
</tr>
<tr>
<td>Tom Hanks</td>
<td>Apollo 13</td>
<td>Kevin Bacon</td>
</tr>
<tr>
<td>Kevin Bacon</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computing Bacon Numbers

How to compute. Find shortest path in performer-movie graph.
Path Finder API

Path finder API.

```java
public class PathFinder

    PathFinder(Graph G, String s)

    int distanceTo(String v)

    Iterable<String> pathTo(String v)
```

Design principles.

- Decouple graph algorithm from graph data type.
- Avoid feature creep.
public class Bacon {
 public static void main(String[] args) {
 In in = new In(args[0]); ← read in the graph from a file
 Graph G = new Graph(in);

 String s = "Bacon, Kevin";
 PathFinder finder = new PathFinder(G, s);

 while (!StdIn.isEmpty()) {
 String performer = StdIn.readLine(); ← process queries
 for (String v : finder.pathTo(s))
 StdOut.println(v);
 }
 }
}

% java Bacon top-grossing.txt
Stallone, Sylvester
Rocky III (1982)
Tamburro, Charles A.
Berkeley, Xander
Apollo 13 (1995)
Bacon, Kevin

% java Bacon top-grossing.txt
Goldberg, Whoopi
Sister Act (1992)
Grodéncik, Max
Apollo 13 (1995)
Bacon, Kevin
Tilghman, Shirley
Computing Shortest Paths

To compute shortest paths:
- Source vertex is at distance 0.
- Its neighbors are at distance 1.
- Their remaining neighbors are at distance 2.
- Their remaining neighbors are at distance 3.
- ...
Breadth First Search

Goal. Given a vertex \(s \), find shortest path to every other vertex \(v \).

BFS from source vertex \(s \)

- Put \(s \) onto a FIFO queue.
- Repeat until the queue is empty:
 - dequeue the least recently added vertex \(v \)
 - add each of \(v \)'s unvisited neighbors to the queue, and mark them as visited.

Key observation. Vertices are visited in increasing order of distance from \(s \) because we use a FIFO queue.
Breadth First Searcher: Preprocessing

```java
public class PathFinder {
    private ST<String, String> prev = new ST<String, String>();
    private ST<String, Integer> dist = new ST<String, Integer>();

    public PathFinder(Graph G, String s) {
        Queue<String> q = new Queue<String>();
        q.enqueue(s);
        dist.put(s, 0);
        while (!q.isEmpty()) {
            String v = q.dequeue();
            for (String w : G.adjacentTo(v)) {
                if (!dist.contains(w)) {
                    q.enqueue(w);
                    dist.put(w, 1 + dist.get(v));
                    prev.put(w, v);
                }
            }
        }
    }
}
```
Breadth First Searcher: Finding the Path

To find shortest path: follow $\text{prev}[]$ from vertex v back to source s.
- Consider vertices: v, $\text{prev}[v]$, $\text{prev}[\text{prev}[v]]$, ..., s.
- Ex: shortest path from C to A: $C \rightarrow G \rightarrow F \rightarrow B \rightarrow A$

```
public  Iterable<String> pathTo(String v) {
    Stack<String> path = new Stack<String>();
    while (dist.contains(v)) {
        path.push(v);
        v = prev.get(v);
    }
}
```
Running Time Analysis

Analysis. BFS scales to solve huge problems.

<table>
<thead>
<tr>
<th>data File</th>
<th>movies</th>
<th>performers</th>
<th>edges</th>
<th>read input</th>
<th>build graph</th>
<th>BFS</th>
<th>show</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.txt</td>
<td>1,288</td>
<td>21,177</td>
<td>28K</td>
<td>0.26 sec</td>
<td>0.52 sec</td>
<td>0.32 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>PG13.txt</td>
<td>2,538</td>
<td>70,325</td>
<td>100K</td>
<td>0.31 sec</td>
<td>0.99 sec</td>
<td>0.72 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>action.txt</td>
<td>14,938</td>
<td>139,861</td>
<td>270K</td>
<td>0.72 sec</td>
<td>2.8 sec</td>
<td>2.0 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>mpaa.txt</td>
<td>21,861</td>
<td>280,624</td>
<td>610K</td>
<td>2.1 sec</td>
<td>7.5 sec</td>
<td>5.5 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>all.txt</td>
<td>285,462</td>
<td>933,864</td>
<td>3.3M</td>
<td>15 sec</td>
<td>56 sec</td>
<td>39 sec</td>
<td>0 sec</td>
</tr>
</tbody>
</table>

60MB

data as of April 9, 2007
Data Analysis

Exercise. Compute histogram of Kevin Bacon numbers.

Input. 285,462 movies, 933,864 actors.

<table>
<thead>
<tr>
<th>Bacon #</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2,249</td>
</tr>
<tr>
<td>2</td>
<td>218,088</td>
</tr>
<tr>
<td>3</td>
<td>561,161</td>
</tr>
<tr>
<td>4</td>
<td>111,149</td>
</tr>
<tr>
<td>5</td>
<td>7,905</td>
</tr>
<tr>
<td>6</td>
<td>903</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>∞</td>
<td>32,294</td>
</tr>
</tbody>
</table>

*Buzz Mauro, Jessica Drizd, Pablo Capussi
Argentine short film *Sweet Dreams* (2005)*

*Fred Ott, solo actor in *Fred Ott Holding a Bird* (1894)*

data as of April 9, 2007
Applications of Breadth First Search

More BFS applications.
- Particle tracking.
- Image processing.
- Crawling the Web.
- Routing Internet packets.
- ...

Extensions. Google maps.
Conclusions

Linked list. Ordering of elements.
Binary tree. Hierarchical structure of elements.
Graph. Pairwise connections between elements.

Data structures.
- Queue: linked list.
- Set: binary tree.
- Symbol table: binary tree.
- Graph: symbol table of sets.
- Breadth first searcher: graph + queue + symbol table.

Importance of data structures.
- Enables us to build and debug large programs.
- Enables us to solve large problems efficiently.
Erdös Number
Erdös Numbers

Paul Erdös. Legendary, brilliant, prolific mathematician who wrote over 1500 papers!

What’s your Erdös number?
- Co-authors of a paper with Erdös: 1.
- Co-authors of those co-authors: 2.
- And so on …

Paul Erdös (1913-1996)

<table>
<thead>
<tr>
<th>Erdös #</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>502</td>
</tr>
<tr>
<td>2</td>
<td>5,713</td>
</tr>
<tr>
<td>3</td>
<td>26,422</td>
</tr>
<tr>
<td>4</td>
<td>62,136</td>
</tr>
<tr>
<td>5</td>
<td>66,157</td>
</tr>
<tr>
<td>6</td>
<td>32,280</td>
</tr>
<tr>
<td>7</td>
<td>10,431</td>
</tr>
<tr>
<td>8</td>
<td>3,214</td>
</tr>
<tr>
<td>9</td>
<td>953</td>
</tr>
<tr>
<td>10</td>
<td>262</td>
</tr>
<tr>
<td>11</td>
<td>94</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>∞</td>
<td>4 billion +</td>
</tr>
</tbody>
</table>
Erdös Graph
Erdös has a Bacon number!

Erdös has a Kevin Bacon number of 4.

```
% java Bacon cast.txt
Erdös, Paul
N Is a Number (1993)
Patterson, Gene
Box of Moon Light (1996)
Turturro, John
Cradle Will Rock (1999)
Tim Robbins
Mystic River (2003)
Bacon, Kevin
```

... but so far, Kevin Bacon doesn't have an Erdös number.
Erdös-Bacon Numbers

Sum of your Erdös and Bacon numbers.

- For most people: infinity!
- But for some ...

Princeton Prof. of Computer Science Brian Kernighan

Erdös number 3:
Brian -- Shen Lin -- Ron Graham -- Erdös

Bacon number 3!
Brian an extra in A Beautiful Mind w/Russell Crowe
Crowe in Cinderella Man w/Beau Starr
Starr in Where the Truth Lies w/Kevin Bacon

Erdös-Bacon number 6
Erdös-Bacon Numbers

Abigail A. Baird, Jerome Kagan, Thomas Gaudette, Kathryn A. Walz, Natalie Hershlag and David A. Boas

Erdös number 4

Stage name: Natalie Portman

Bacon number 1

Erdös-Bacon number 6
Erdös-Bacon Numbers

Erdös number 4

Chayes, L., McKellar, D. & Winn, B. (1998)
Percolation and Gibbs states multiplicity for ferromagnetic Ashkin–Teller models on \mathbb{Z}^2.

Bacon number 2

Erdös-Bacon number 6

Danica McKellar
Digression: Milgram's Other Famous Experiment

Obedience to authority (Yale, 1961 - 1962).

- Role of punishment in learning.
- Experimenter: explains experiment to student.
- Student: repeat list of word pairs.
- Teacher: if student gets one wrong, administer shock in 15 volt increments.
Digression: Milgram's Other Famous Experiment

- Role of punishment in learning.
- Experimenter: explains experiment to student.
- Student: repeat list of word pairs.
- Teacher: if student gets one wrong, administer shock in 15 volt increments.

65% of teachers punished learners to maximum of 450 volts.
- None stopped before 300 volts!
Kevin Bacon Game

Game. Given an actor or actress, find chain of movies connecting them to Kevin Bacon.

<table>
<thead>
<tr>
<th>Actor</th>
<th>Was in</th>
<th>With</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whoopi Goldberg</td>
<td>Ghost</td>
<td>Patrick Swayze</td>
</tr>
<tr>
<td>Patrick Swayze</td>
<td>Dirty Dancing</td>
<td>Jennifer Gray</td>
</tr>
<tr>
<td>Jennifer Gray</td>
<td>Ferris Beuller's Day Off</td>
<td>Matthew Broderick</td>
</tr>
<tr>
<td>Matthew Broderick</td>
<td>The Road to Wellville</td>
<td>John Cusack</td>
</tr>
<tr>
<td>John Cusack</td>
<td>Bullets Over Broadway</td>
<td>Dianne West</td>
</tr>
<tr>
<td>Dianne West</td>
<td>Footloose</td>
<td>Kevin Bacon</td>
</tr>
<tr>
<td>Kevin Bacon</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>