How Does the Internet Work? (continued)

Acknowledgements: J. Rexford and V. Ramachandran
Layering in the IP Protocols

- HTTP (Web)
- Telnet
- Transmission Control Protocol
- Domain Name Service
- Real-Time Protocol

- User Datagram Protocol
- Internet Protocol

- SONET
- Ethernet
- ATM
Internet Architecture

- **ISP 1**
 - Dial-in access
 - Access router
 - Commercial customer

- **ISP 2**
 - Interdomain protocols
 - Private peering

- **ISP 3**
 - Destination

- **NAP**
 - Gateway router

- **Intradomain protocols**

Commercial customer

Destination
IP Connectionless Paradigm

• No error detection or correction for packet data
 – Higher-level protocol can provide error checking

• Successive packets may not follow the same path
 – Not a problem as long as packets reach the destination

• Packets can be delivered out-of-order
 – Receiver can put packets back in order (if necessary)

• Packets may be lost or arbitrarily delayed
 – Sender can send the packets again (if desired)

• No network congestion control (beyond “drop”)
 – Send can slow down in response to loss or delay
IP Packet Structure

<table>
<thead>
<tr>
<th>4-bit Version</th>
<th>4-bit Header Length</th>
<th>8-bit Type of Service (TOS)</th>
<th>16-bit Total Length (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>16-bit Identification</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-bit Flags</td>
<td>13-bit Fragment Offset</td>
</tr>
<tr>
<td>8-bit Time to Live (TTL)</td>
<td>8-bit Protocol</td>
<td>16-bit Header Checksum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32-bit Source IP Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32-bit Destination IP Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Options (if any)</td>
<td>20-byte Header</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Payload</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Main IP Header Fields

- **Version number** (e.g., version 4, version 6)
- **Header length** (number of 4-byte words)
- **Header checksum** (error check on header)
- **Source** and **destination** IP addresses
- **Upper-level protocol** (e.g., TCP, UDP)
- **Length** in bytes (up to 65,535 bytes)
- **IP options** (security, routing, timestamping, etc.)
Time-to-Live Field

• Potential robustness problem
 - What happens if a packet gets stuck in a routing loop?
 - What happens if the packet arrives much later?
• Time-to-live field in packet header
 - TTL field decremented by each router on the path
 - Packet is discarded when TTL field reaches 0
 - Discard generates “timer expired” message to source
• Expiry message exploited in traceroute tool
 - Generate packets with TTL of i=1, 2, 3, 4, ...
 - Extract router id from the “timer expired” message
 - Provides a way to gauge the path to destination
Type-of-Service Bits

• Initially, envisioned for type-of-service routing
 - Low-delay, high-throughput, high-reliability, etc.
 - However, current IP routing protocols are static
 - And, most routers have first-in-first-out queuing
 - So, the ToS bits are ignored in most routers today
• Now, heated debate for differentiated services
 - ToS bits used to define a small number of classes
 - Affect router packet scheduling and buffering polices
 - Arguments about consistent meaning across networks
Transmission Control Protocol (TCP)

- Byte-stream socket abstraction for applications
- **Retransmission** of lost or corrupted packets
- **Flow-control** to respond to network congestion
- Simultaneous transmission in both directions
- **Multiplexing** of multiple logical connections
TCP Header

16-bit source port number | 16-bit destination port number

32-bit sequence number

32-bit acknowledgement number

4-bit header length | U | A | P | S | T | F | 16-bit window size

16-bit TCP checksum

16-bit urgent pointer

Options (if any)

Payload
Establishing a TCP Connection

- Three-way handshake to establish connection
 - Host A sends a SYN (open) to the host B
 - Host B returns a SYN acknowledgement (ACK)
 - Host A sends an ACK to acknowledge the SYN ACK
- Closing the connection
 - Finish (FIN) to close and receive remaining bytes (and other host sends a FIN ACK to acknowledge)
 - Reset (RST) to close and not receive remaining bytes
Lost and Corrupted Packets

- Detecting corrupted and lost packets
 - Error detection via checksum on header and data
 - Sender sends packet, sets timeout, and waits for ACK
 - Receiver sends ACKs for received packets
- Retransmission from sender
 - Sender retransmits lost/corrupted packets
 - Receiver reassembles and reorders packets
 - Receiver discards corrupted and duplicated packets

Packet loss rates are high (e.g., 10%), causing significant delay (especially for short Web transfers)!
TCP Flow Control

• Packet loss used to indicate network congestion
 - Router drop packets when buffers are (nearly) full
 - Affected TCP connection reacts by backing-off

• **Window-based** flow control
 - Sender limits number of outstanding bytes
 - Sender reduces *window size* when packets are lost
 - Initial slow-start phase to learn a good window size

• TCP flow-control header fields
 - *Window size* (maximum # of outstanding bytes)
 - *Sequence number* (byte offset from starting #)
 - *Acknowledgement number* (cumulative bytes)
User Datagram Protocol (UDP)

• Some applications do not want or need TCP
 - Don’t need recovery from lost or corrupted packets
 - Don’t want flow control to respond to loss/congestion

• Amount of UDP packets is rapidly increasing
 - Commonly used for multimedia applications
 - UDP traffic interferes with TCP performance
 - But, many firewalls do not accept UDP packets

• Dealing with the growth in UDP traffic
 - Pressure for applications to apply flow control
 - Future routers may enforce “TCP-like” behavior
 - Need better mathematical models of TCP behavior
Getting an IP Packet From A to B

- Host must know at least three IP addresses
 - Host IP address (to use as its own source address)
 - Domain Name Service (to map names to addresses)
 - Default router to reach other hosts (e.g., gateway)

- Simple customer/company
 - Connected to a single service provider
 - Has just one router connecting to the provider
 - Has a set of IP addresses allocated in advance
 - Does not run an Internet routing protocol
Autonomous System: A collection of IP subnets and routers under the same administrative authority.

- Interior Routing Protocol (e.g., Open Shortest Path First)
- Exterior Routing Protocol (e.g., Border Gateway Protocol)
Open Shortest-Path First (OSPF) Routing

- Network is a graph with routers and links
 - Each unidirectional link has a weight (1-63,535)
 - Shortest-path routes from sum of link weights
- Weights are assigned statically (configuration file)
 - Weights based on capacity, distance, and traffic
 - Flooding of info about weights and IP addresses
- Large networks can be divided into multiple domains
Example Network and Shortest Path

OSPF domain

6.8.9.0/24, 7.0.0.0/8
5.5.5.0/24

12.34.0.0/16
1.2.3.0/24, 4.5.0.0/16
IP Routing in OSPF

• Each router has a **complete view of the topology**
 - Each router transmits information about its links
 - Reliable flooding to all routers in the domain
 - Updates periodically or on link failure/installation

• Each router computes **shortest path(s)**
 - Maintenance of a complete link-state database
 - Execution of Dijkstra’s shortest-path algorithm

• Each router constructs a **forwarding table**
 - Forwarding table with next hop for each destination
 - Hop-by-hop routing independently by each router
Routing Software

Routing protocol software
- Checking connection with neighboring routers ("hello")
- Exchanging link-state information with other routers
- Computing shortest paths and IP forwarding table
- Handling of packets with IP options selected
- Exchanging routing information between providers

Router management and configuration
- Configuration files to configure addresses, routing, etc.
- Command-line interface to inspect/change configuration
- Logging of statistics in management information base
- More complex traffic measurement (e.g., NetFlow)
Border Gateway Protocol (BGP)

- BGP routes traffic through a network where the AS’s can be connected in any way.
- Three types of AS’s: stub (local traffic only); multihomed (multiple connections but local traffic only); transit (“thru” and local traffic).
Border Gateway Protocol (BGP)

- **Reachability**: from one AS, what other AS’s can be reached from it?
- Every AS has a **BGP Speaker** node that advertises its reachability info by sending **complete paths** to reachable networks.
- *Given advertised updates, we calculate** loop-free routes to networks.*
- **Problem of scale**: too many networks; don't know how an AS works, so it's hard to determine cost to send through each.
Connecting With Our Neighbors

- **Public peering**
 - Network Access Points (e.g., MAE East, MAE West)
 - Public location for connecting routers
 - Routers exchange data and routing information

- **Private peering**
 - Private connections between two peers (e.g., MCI)
 - Private peers exchange direct traffic (no transit)
 - Private peers must exchange similar traffic volumes

- **Transit networks**
 - Provider pays another for transit service (e.g., BBN)
 - Improve performance and reach more addresses
Reference

• For more information, see:

Reading Assignment
For September 20

• Addendum to Chapter 4 (Sections 106, 107, 109 of U.S. Copyright Law) and Chapter 5 of The Digital Dilemma. (http://books.nap.edu/html/digital_dilemma/)

• (Optional) Chapter 1 and Appendix E of The Digital Dilemma.