CS155b: E-Commerce

Lecture 3: Jan. 21, 2003

How Does the Internet Work? (continued)

Acknowledgements: J. Rexford and V. Ramachandran

Announcement

Professor Feigenbaum's office hours are canceled on Thursday, 1/23.

The TA will hold usual office hours on Wednesday, 1/22, from 3-4pm.

Layering in the IP Protocols

Internet Architecture

The Physical Layer

· A network spans different hardware.

- Physical components can work however they want, as long as the interface between them is consistent.
- Then, different hardware can be connected.

The Role of the IP Layer

• Internet Protocol (IP): gives a standard way to "package" messages across different hardware types.

IP Connectionless Paradigm

- No error detection or correction for packet data
 - Higher-level protocol can provide error checking
- Successive packets may not follow the same path
 - Not a problem as long as packets reach the destination
- Packets can be delivered out-of-order
 - Receiver can put packets back in order (if necessary)
- Packets may be lost or arbitrarily delayed
 - Sender can send the packets again (if desired)
- No network congestion control (beyond "drop")
 - Send can slow down in response to loss or delay

IP Packet Structure

4-bit Version Length	8-bit Type of Service (TOS)	16-bit Total Length (Bytes)		
16-bit Identification		3-bit Flags	13-bit Fragment Offset	
8-bit Time to Live (TTL)	8-bit Protocol	16-bit Header Checksum		20-byte Header
32-bit Source IP Address				
32-bit Destination IP Address				
Options (if any)				•
Payload				

Main IP Header Fields

- Version number (e.g., version 4, version 6)
- Header length (number of 4-byte words)
- Header checksum (error check on header)
- Source and destination IP addresses
- Upper-level protocol (e.g., TCP, UDP)
- Length in bytes (up to 65,535 bytes)
- · IP options (security, routing, timestamping, etc.)
- TTL (prevents messages from looping around forever; packets "die" if they "get lost")

Adding Some Functionality

- More guarantees, e.g., that packets go in order, require more work at both ends.
- · Solution: add another layer (e.g., TCP)

Transmission Control Protocol (TCP)

- Byte-stream socket abstraction for applications
- Retransmission of lost or corrupted packets
- Flow-control to respond to network congestion
- Simultaneous transmission in both directions
- Multiplexing of multiple logical connections

TCP Header

Establishing a TCP Connection

- Three-way handshake to establish connection
 - Host A sends a SYN (open) to the host B
 - Host B returns a SYN acknowledgement (ACK)
 - Host A sends an ACK to acknowledge the SYN ACK
- Closing the connection
 - Finish (FIN) to close and receive remaining bytes (and other host sends a FIN ACK to acknowledge)
 - Reset (RST) to close and not receive remaining bytes

Lost and Corrupted Packets

- Detecting corrupted and lost packets
 - Error detection via checksum on header and data
 - Sender sends packet, sets timeout, and waits for ACK
 - Receiver sends ACKs for received packets
- Retransmission from sender
 - Sender retransmits lost/corrupted packets
 - Receiver reassembles and reorders packets
 - Receiver discards corrupted and duplicated packets

Packet loss rates are high (e.g., 10%), causing significant delay (especially for short Web transfers)!

TCP Flow Control

- · Packet loss used to indicate network congestion
 - Router drops packets when buffers are (nearly) full
 - Affected TCP connection reacts by backing off
- Window-based flow control
 - Sender limits number of outstanding bytes
 - Sender reduces window size when packets are lost
 - Initial slow-start phase to learn a good window size
- TCP flow-control header fields
 - Window size (maximum # of outstanding bytes)
 - Sequence number (byte offset from starting #)
 - Acknowledgement number (cumulative bytes)

User Datagram Protocol (UDP)

- Some applications do not want or need TCP
 - Don't need recovery from lost or corrupted packets
 - Don't want flow control to respond to loss/congestion
- Fraction of UDP packets is rapidly increasing
 - Commonly used for multimedia applications
 - UDP traffic interferes with TCP performance
 - But, many firewalls do not accept UDP packets
- Dealing with the growth in UDP traffic
 - Pressure for applications to apply flow control
 - Future routers may enforce "TCP-like" behavior
 - Need better mathematical models of TCP behavior

Getting from A to B: Summary

- Need IP addresses for:
 - Self (to use as source address)
 - DNS Server (to map names to addresses)
 - Default router to reach other hosts (e.g., gateway)
- Use DNS to get destination address
- Pass message through TCP/IP handler
- · Send it off! Routers will do the work:
 - Physically connecting different networks
 - Deciding where to next send packets (HOW??)

Connecting Networks

Autonomous System: A collection of IP subnets and routers under the same administrative authority.

- Interior Routing Protocol (e.g., Open Shortest Path First)
- ----- Exterior Routing Protocol (e.g., Border Gateway Protocol)

Where to Go Next

- Routers contain a forwarding table that pairs destination with next hop (on what physical wire to send msg.).
- The table gets populated with information learned internally (e.g., OSPF) and externally (e.g., BGP).
- OSPF and BGP are protocols that communicate knowledge about destinations between routers.

Open Shortest-Path First (OSPF) Routing

- Network is a graph with routers and links
 - Each unidirectional link has a weight (1-63,535)
 - Shortest-path routes from sum of link weights
- Weights are assigned statically (configuration file)
 - Weights based on capacity, distance, and traffic
 - Flooding of info about weights and IP addresses
- Large networks can be divided into multiple domains

Example Network and Shortest Path

IP Routing in OSPF

- · Each router has a complete view of the topology
 - Each router transmits information about its links
 - Reliable flooding to all routers in the domain
 - Updates periodically or on link failure/installation
- Each router computes shortest path(s)
 - Maintenance of a complete link-state database
 - Execution of Dijkstra's shortest-path algorithm
- · Each router constructs a forwarding table
 - Forwarding table with next hop for each destination
 - Hop-by-hop routing independently by each router

OSPF Won't Work Between Companies

- OSPF nodes are managed by the same authority. They have a common goal (find shortest path).
- Domain is small enough that nodes can flood each other with information.
- Across companies, business
 relationships determine routing
 policy. More complicated!

Business Relationships Connect the Internet

Border Gateway Protocol (BGP)

- BGP routes traffic through a network where the AS's can be connected in any way.
- Three types of AS's: stub (local traffic only);
 multihomed (multiple connections but local traffic only);
 transit ("thru" and local traffic).

Border Gateway Protocol (BGP) Concepts

- Reachability: from one AS, what other AS's can be reached from it?
- Every A5 has a BGP Speaker node that advertises its reachability info by sending complete paths to reachable networks.
- Given advertised updates, we calculate loop-free routes to networks.
- Problem of scale: too many networks; don't know how an AS works, so it's hard to determine cost to send through each.

BGP Preferences

- Nodes have to choose a path from all those advertised by their neighbors.
- BGP table contains all the collected routes and their local preference.
- Choose route with highest rank.
- How to set rank?
 - Based on routing policy: prefer customers first, then peers, then upstream providers.
 - Other factors? Geography, special agreements with neighbors (see HW problem for example).

References

· For more information, see:

Peterson and Davie, <u>Computer</u> <u>Networks: A Systems Approach</u>. Morgan Kaufmann Publishers, 1999.

or:

RFCs that define the protocols (see "Useful Links" page on course home page).

Homework Assignment For January 23

- Chapter 2 of Text.
- Chapter 4 of <u>Blown to Bits</u>, Evans and Wurster, HBS Press: 1999.

 (Available in print form only)
- First written HW, due 1/28, is now available online.

(http://zoo.cs.yale.edu/classes/cs155/spr03/hw1.pdf)