CS155b: E-Commerce

Lecture 3: Jan. 21, 2003

How Does the Internet Work? (continued)

Acknowledgements: J. Rexford and V. Ramachandran
Announcement

Professor Feigenbaum’s office hours are canceled on Thursday, 1/23.

The TA will hold usual office hours on Wednesday, 1/22, from 3-4pm.
Layering in the IP Protocols

HTTP (Web) Telnet Domain Name Service Simple Network Management

Transmission Control Protocol User Datagram Protocol

Internet Protocol

SONET Ethernet ATM
Internet Architecture

dial-in access

interdomain protocols

private peering

ISP 2

destination

gateway router

ISP 1

NAP

gateway router

access router

ISP 3

destination

intradomain protocols

commercial customer

destination
The Physical Layer

- A network spans different hardware.

- Physical components can work however they want, as long as the interface between them is consistent.

- Then, different hardware can be connected.
The Role of the IP Layer

- **Internet Protocol (IP):** gives a standard way to "package" messages across different hardware types.

1. Message is put in IP packet.
2. Dial-up hardware gets packet to router (however it wants, but intact).
3. Routers look at destination, decide where to send it next.
4. Packet gets to destination network.
5. Original message extracted from packet.

- **PPP**
- **FDDI**
- **100BaseT Ethernet**
- **10BaseT Ethernet**
- **modem**
- **access point**
- **router**
- **hub**
- **server**
IP Connectionless Paradigm

- No error detection or correction for packet data
 - Higher-level protocol can provide error checking
- Successive packets may not follow the same path
 - Not a problem as long as packets reach the destination
- Packets can be delivered out-of-order
 - Receiver can put packets back in order (if necessary)
- Packets may be lost or arbitrarily delayed
 - Sender can send the packets again (if desired)
- No network congestion control (beyond “drop”)
 - Send can slow down in response to loss or delay
IP Packet Structure

<table>
<thead>
<tr>
<th>4-bit Version</th>
<th>4-bit Header Length</th>
<th>8-bit Type of Service (TOS)</th>
<th>16-bit Total Length (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>16-bit Identification</td>
<td>3-bit Flags</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13-bit Fragment Offset</td>
</tr>
<tr>
<td>8-bit Time to Live (TTL)</td>
<td>8-bit Protocol</td>
<td>16-bit Header Checksum</td>
<td></td>
</tr>
<tr>
<td>32-bit Source IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32-bit Destination IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options (if any)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payload</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Main IP Header Fields

- **Version number** (e.g., version 4, version 6)
- **Header length** (number of 4-byte words)
- **Header checksum** (error check on header)
- **Source** and **destination** IP addresses
- **Upper-level protocol** (e.g., TCP, UDP)
- **Length** in bytes (up to 65,535 bytes)
- **IP options** (security, routing, timestamping, etc.)
- **TTL** (prevents messages from looping around forever; packets “die” if they “get lost”)
Adding Some Functionality

- More guarantees, e.g., that packets go in order, require more work at both ends.
- Solution: add another layer (e.g., TCP)
Transmission Control Protocol (TCP)

- Byte-stream socket abstraction for applications
- **Retransmission** of lost or corrupted packets
- **Flow-control** to respond to network congestion
- Simultaneous transmission in both directions
- **Multiplexing** of multiple logical connections
TCP Header

- 16-bit source port number
- 16-bit destination port number
- 32-bit sequence number
- 32-bit acknowledgement number
- 4-bit header length
- URG ACK PSH RST SYN FIN
- 16-bit window size
- 16-bit TCP checksum
- 16-bit urgent pointer
- Options (if any)
- Payload
Establishing a TCP Connection

- Three-way handshake to establish connection
 - Host A sends a SYN (open) to the host B
 - Host B returns a SYN acknowledgement (ACK)
 - Host A sends an ACK to acknowledge the SYN ACK

- Closing the connection
 - Finish (FIN) to close and receive remaining bytes (and other host sends a FIN ACK to acknowledge)
 - Reset (RST) to close and not receive remaining bytes
Lost and Corrupted Packets

- Detecting corrupted and lost packets
 - Error detection via checksum on header and data
 - Sender sends packet, sets timeout, and waits for ACK
 - Receiver sends ACKs for received packets

- Retransmission from sender
 - Sender retransmits lost/corrupted packets
 - Receiver reassembles and reorders packets
 - Receiver discards corrupted and duplicated packets

Packet loss rates are high (e.g., 10%), causing significant delay (especially for short Web transfers)!
TCP Flow Control

- Packet loss used to indicate network congestion
 - Router drops packets when buffers are (nearly) full
 - Affected TCP connection reacts by backing off
- **Window-based** flow control
 - Sender limits number of outstanding bytes
 - Sender reduces *window size* when packets are lost
 - Initial slow-start phase to learn a good window size
- TCP flow-control header fields
 - *Window size* (maximum # of outstanding bytes)
 - *Sequence number* (byte offset from starting #)
 - *Acknowledgement number* (cumulative bytes)
User Datagram Protocol (UDP)

- Some applications do not want or need TCP
 - Don’t need recovery from lost or corrupted packets
 - Don’t want flow control to respond to loss/congestion
- Fraction of UDP packets is rapidly increasing
 - Commonly used for multimedia applications
 - UDP traffic interferes with TCP performance
 - But, many firewalls do not accept UDP packets
- Dealing with the growth in UDP traffic
 - Pressure for applications to apply flow control
 - Future routers may enforce “TCP-like” behavior
 - Need better mathematical models of TCP behavior
Getting from A to B: Summary

- Need IP addresses for:
 - Self (to use as source address)
 - DNS Server (to map names to addresses)
 - Default router to reach other hosts (e.g., gateway)

- Use DNS to get destination address
- Pass message through TCP/IP handler
- Send it off! **Routers** will do the work:
 - Physically connecting different networks
 - Deciding where to next send packets (**HOW??**)
Connecting Networks

Autonomous System: A collection of IP subnets and routers under the same administrative authority.

- **Interior Routing Protocol** (e.g., Open Shortest Path First)
- **Exterior Routing Protocol** (e.g., Border Gateway Protocol)
Where to Go Next

• Routers contain a **forwarding table** that pairs destination with next hop (on what physical wire to send msg.).

• The table gets populated with information learned **internally** (e.g., OSPF) and **externally** (e.g., BGP).

• OSPF and BGP are protocols that communicate **knowledge about destinations** between routers.
Open Shortest-Path First (OSPF) Routing

- Network is a graph with routers and links
 - Each unidirectional link has a weight (1-63,535)
 - Shortest-path routes from sum of link weights
- Weights are assigned statically
 (configuration file)
 - Weights based on capacity, distance, and traffic
 - Flooding of info about weights and IP addresses
- Large networks can be divided into multiple domains
Example Network and Shortest Path

6.8.9.0/24, 7.0.0.0/8
5.5.5.0/24

12.34.0.0/16
1.2.3.0/24, 4.5.0.0/16

OSPF domain

link
outer
IP Routing in OSPF

- Each router has a **complete view of the topology**
 - Each router transmits information about its links
 - Reliable flooding to all routers in the domain
 - Updates periodically or on link failure/installation
- Each router computes **shortest path(s)**
 - Maintenance of a complete link-state database
 - Execution of Dijkstra’s shortest-path algorithm
- Each router constructs a **forwarding table**
 - Forwarding table with next hop for each destination
 - Hop-by-hop routing independently by each router
OSPF Won’t Work Between Companies

- OSPF nodes are managed by the same authority. They have a common goal (find shortest path).
- Domain is small enough that nodes can flood each other with information.
- Across companies, *business relationships* determine routing policy. More complicated!
Business Relationships
Connect the Internet

Tier 1

AT&T

Large Provider

UUNet

Middle Tiers

ISP

Big Company

ISP

Small Customers
Border Gateway Protocol (BGP)

- BGP routes traffic through a network where the AS’s can be connected in any way.
- Three types of AS’s: **stub** (local traffic only); **multihomed** (multiple connections but local traffic only); **transit** (“thru” and local traffic).
Border Gateway Protocol (BGP) Concepts

- **Reachability**: from one AS, what other AS’s can be reached from it?
- Every AS has a **BGP Speaker** node that advertises its reachability info by sending **complete paths** to reachable networks.
- Given advertised updates, we calculate **loop-free** routes to networks.
- Problem of scale: too many networks; don’t know how an AS works, so it’s hard to determine cost to send through each.
BGP Preferences

• Nodes have to choose a path from all those advertised by their neighbors.
• BGP table contains all the collected routes and their local preference.
• Choose route with highest rank.
• How to set rank?
 - Based on routing policy: prefer customers first, then peers, then upstream providers.
 - Other factors? Geography, special agreements with neighbors (see HW problem for example).
References

• For more information, see:

or:

RFCs that define the protocols (see “Useful Links” page on course home page).
Homework Assignment
For January 23

• Chapter 2 of Text.
• Chapter 4 of Blown to Bits, Evans and Wurster, HBS Press: 1999.
 (Available in print form only)
• First written HW, due 1/28, is now available online.
 (http://zoo.cs.yale.edu/classes/cs155/spr03/hw1.pdf)