CPSC156a: The Internet Co-Evolution of Technology and Society

Lecture 2: September 9, 2003 Internet Basics

Acknowledgments: S. Bradner and R. Wang

History

- Late 1960s and early 1970s: ARPANET
 - US Department of Defense
 - Connects small ARPA-sponsored data networks
 - Ground breaking testbed for network ideas and designs
- Early 1980s: Other wide-area data networks are established (*e.g.*, BITNET and Usenet).
- Late 1980s and early 1990s:
 - "ARPANET" fades out.
 - US Gov't sponsors NSFNET, which connects large regional networks.
 - Commercial data networks become popular (*e.g.*, Prodigy, Compuserve, and AOL).
- Mid-1990s: Unified "Internet"

Internet Protocols Design Philosophy

- Ordered set of goals:
 - 1. multiplexed utilization of existing networks
 - 2. survivability in the face of failure
 - 3. support multiple types of communications service
 - 4. accommodate a variety of network types
 - 5. permit distributed management of resources
 - 6. cost effective
 - 7. low effort to attach a host
 - 8. account for resources
- Not all goals have been met

Packets!

- Basic decision: use packets not circuits (Kleinrock)
- Packet (a.k.a. datagram)

Dest Addr	Src Addr	payload
-----------	----------	---------

- self contained
- handled independently of preceding or following packets
- contains destination and source internetwork address
- may contain processing hints (e.g., QoS tag)
- no delivery guarantees
 - net may drop, duplicate, or deliver out of order
 - reliability (where needed) done at higher levels

Telephone Network

- Connection-based
- Admission control
- Intelligence is "in the network"
- Traffic carried by relatively few, "well-known" communications companies

Internet

- Packet-based
- Best effort
- Intelligence is "at the endpoints"
- Traffic carried by many routers, operated by a changing set of "unknown" parties

Technology Advances

	1981	1999	Factor
MIPS	1	1000	1,000
\$/MIPS	\$100K	\$5	20,000
DRAM Capacity	128KB	256MB	2,000
Disk Capacity	10MB	50GB	5,000
Network B/W	9600b/s	155Mb/s	15,000
Address Bits	16	64	4
Users/Machine	10s	<=1	<0.1

- Expensive machines, cheap humans
- Cheap machines, expensive humans
- (Almost) free machines, <u>really</u> expensive humans, and communities

The Network is the Computer

- Relentless decentralization
 - "Smaller, cheaper, more numerous"
 mainframe → mini → PC → palms →
 ubiquitous/embedded
 - More computers \rightarrow more data communication
- (Shifting) reasons computers talk to each other
 - Efficient sharing of machine resources
 - Sharing of data
 - Parallel computing
 - Human communication

The Network is the computer (continued)

- Networks are everywhere and they are converging.
 - SAN, LAN, MAN, WAN
 - All converging towards a similar technology
 - Sensor nets
- New chapter of every aspect of computer science
 - Re-examine virtually all the issues in the context of distributed systems or parallel systems
- This is only the beginning.

Discussion Point

- Ubiquitous computers and networks
- More data communication begets more human communication.
- "(Almost) free machines, <u>really</u> expensive humans"

Are humans on a collision course with networks?

Reading Assignment For This Week

- "Networks: How the Internet Works," Appendix C of <u>The Digital Dilemma</u> (NRC, 2000) http://books.nap.edu/html/digital_dilemma/appC.html
- "Rethinking the design of the Internet: The end-to-end arguments vs. the brave new world," Clark and Blumenthal, 2000 http://itel.mit.edu/itel/docs/jun00/TPRC-Clark-Blumenthal.pdf