

YOUR NAME PLEASE:

NETID:

Computer Science 200b
Final Exam

May 5, 2019

Enter your netid at the bottom of each page - NOW.

Closed book and closed notes, EXCEPT for one 8.5 x 11 page of notes, which you must hand in with your

exam. No electronic devices. Show ALL work you want graded on the test itself. You may not hand in a

Blue Book.

For problems that do not ask you to justify the answer, an answer alone is sufficient. However, if the

answer is wrong and no derivation or supporting reasoning is given, there will be no partial credit.

GOOD LUCK!

Problem Points Actual
1 12 Crypto
2 12 Python
3 12 Python: OK
4 12 Happy number:

OK
5 12 Btop
6 12 P to b:
7 12 UNIX: OK
8 12 decorator
9 12 Regex: OK
10 12 shell scripts OK

Total 120

Page 1. NETID:

1.a. (6 points)

Short answer.

1.a. Describe Kerckhoff’s Principle and the rationale behind it.

The inner workings of the cryptosystem are completely known to the attacker, and the
only secret is a key. The rationale is that while having a secret cryptosystem may be
advantageous it will not stay secret for long, and once exposed these secret systems are
often insecure.

The bad guys can try to steal it or one of your own people might be persuaded or bribed
to reveal it.

Also, by making it public, as with open source software, it is more likely that a bug or
vulnerability might be detected and even corrected.

1.b. What is the difference between integrity and confidentiality? Give examples.

Confidentiality - detecting and preventing unauthorized reading
Integrity - preventing and detecting unauthorized writing

Page 2. NETID:

1.c (6 points) Write cencode(s,n) which encodes string s by shifting n positions, mod 26. The
program converts s to lowercase and removes all non-alphabetic characters. Here are some
examples:

>>> cencode('abcde',5)
'fghij'
>>> cencode('ABCDE',5)
'fghij'
>>> cencode('FGHIJ',-5)
'abcde'
>>> cencode('abcde',53)
'bcdef'
>>> cencode("what's going on?",1)
'xibuthpjohpo'
>>> cencode("what's going on?",0)
'whatsgoingon'
>>>

def cencode(s, n):
 n = n % 26
 result = []
 #s2 = [x for x in s.lower() if x != ' ']
 s2 = [x for x in s.lower() if x.isalpha()]
 for c in s2:
 x = ord(c) - ord('a') + n
 x = (x % 26) + ord('a')
 result.append(chr(x))
 return ''.join(result)

Page 3. NETID:

2. (12 points)

Write the values of ​ONLY 6 ​of the following ​underlined​ Python expressions. No errors occur.

>>> ​len(" hello ".strip())
5

>>> ​list(reversed([1,2,3,4])).pop()
1

>>> ​sorted(['ccc', 'aaaa', 'd', 'bb'], key=len)
['d', 'bb', 'ccc', 'aaaa']

>>> ​set([4,3,2,1,1,2,3,4,5])
{1, 2, 3, 4, 5}

>>> ​[int(x)* int(x) for x in str(12345)]
[1, 4, 9, 16, 25]

>>> ​list(filter (lambda x: x % 2 == 0, range(10)))
[0, 2, 4, 6, 8]

>>> ​(lambda x: (x << 5) + x)(2)
66

>>> ​{x for x in range(10) if x % 2 == 0}
{0, 2, 4, 6, 8}

>>> ​{x1:x2 for (x1,x2) in enumerate("abcde")}
{0: 'a', 1: 'b', 2: 'c', 3: 'd', 4: 'e'}

Page 4. NETID:

3. (12 points)

Write a Python function, f(n), which prints the sides of all right triangles with integer sides less
than n, as demonstrated below. Remember, a​2​ + b​2​ = c​2​. ​To get full credit, write it as a list
comprehension.

>>> f(10)

[(3, 4, 5)]

>> f(15)

[(3, 4, 5), (5, 12, 13), (6, 8, 10)]

>>> f(30)

[(3, 4, 5), (5, 12, 13), (6, 8, 10), (7, 24, 25), (8, 15, 17), (9,

12, 15), (10, 24, 26), (12, 16, 20), (15, 20, 25), (20, 21, 29)]

>>> f(50)

[(3, 4, 5), (5, 12, 13), (6, 8, 10), (7, 24, 25), (8, 15, 17), (9,

12, 15), (9, 40, 41), (10, 24, 26), (12, 16, 20), (12, 35, 37), (15,

20, 25), (15, 36, 39), (16, 30, 34), (18, 24, 30), (20, 21, 29), (21,

28, 35), (24, 32, 40), (27, 36, 45)]

def f(n):

 return [(x,y,z) for x in range(1,n) for y in range(x,n) for z in

range(y,n) if x**2 + y**2 == z**2]

Page 5. NETID:

4. (12 points)​ ​A ​happy number​ is a number defined by the following process: Starting with any
positive​ ​integer​, replace the number by the ​sum​ of the squares of its ​digits​, and repeat the process
until the number either equals 1 (where it will stay), or it loops endlessly in a cycle which does not
include 1. Those numbers for which this process ends in 1 are ​happy numbers​, while those that do
not end in 1 are ​unhappy numbers​ (or ​sad numbers​).

For example, 19 is happy, as the associated sequence is:

1​2​ + 9​2​ = 82

8​2​ + 2​2​ = 68

6​2​ + 8​2​ = 100

1​2​ + 0​2​ + 0​2​ = 1.

Write the Python procedures happy(n) and is_happy(n) which have the following behavior. You may
also write auxiliary functions. (Note that 4 is not happy.)

>>> happy(19)

82

>>> happy(82)

68

>>> happy(68)

100

>>> happy(100)

1

>>> happy(4)

16

>>> happy(16)

37

>>> happy(37)

58

>>> happy(58)

89

>>> happy(89)

145

>>> happy(145)

42

>>> happy(42)

20

>>> happy(20)

4

>>> is_happy(19)

True

>>> is_happy(100)

True

>>> is_happy(4)

False

>>> is_happy(2)

False

Page 6. NETID:

https://en.wikipedia.org/wiki/Positive_number
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Summation
https://en.wikipedia.org/wiki/Numerical_digit

4. (continued)

def square(x):

 return int(x) * int(x)

def happy(number):

 return sum(map(square, list(str(number))))

def is_happy(number):

 seen_numbers = set()

 while number > 1 and (number not in seen_numbers):

 seen_numbers.add(number)

 number = happy(number)

 return number == 1

Page 7. NETID:

5. (12 points)​ ​Define a Python procedure bytetopython() that generates the following bytecode

>>> dis.dis(bytetopython)

 35 0 LOAD_CONST 1 (10)

 3 STORE_FAST 0 (a)

 36 6 LOAD_CONST 2 (20)

 9 STORE_FAST 1 (b)

 37 12 LOAD_CONST 3 (30)

 15 STORE_FAST 2 (c)

 38 18 LOAD_FAST 0 (a)

 21 LOAD_FAST 1 (b)

 24 BINARY_ADD

 25 LOAD_FAST 2 (c)

 28 BINARY_ADD

 29 STORE_FAST 3 (d)

 39 32 LOAD_FAST 3 (d)

 35 LOAD_CONST 4 (3)

 38 BINARY_TRUE_DIVIDE

 39 RETURN_VALUE

def bytetopython():

 a = 10

 b = 20

 c = 30

 d = a + b + c

 return d / 3

Page 8. NETID:

6. (12 points)

Provide the bytecode generated for the following Python function, pythontobyte(). Use dis.dis()
format, but without the source code line numbers from the first column.

def pythontobyte():

 x0 = 3

 v0 = 2

 t = 10

 a = 9.8

 return x0 + v0*t + .5*a*t*t

>>> dis.dis(pythontobyte)

 42 0 LOAD_CONST 1 (3)

 3 STORE_FAST 0 (x0)

 43 6 LOAD_CONST 2 (2)

 9 STORE_FAST 1 (v0)

 44 12 LOAD_CONST 3 (10)

 15 STORE_FAST 2 (t)

 45 18 LOAD_CONST 4 (9.8)

 21 STORE_FAST 3 (a)

 46 24 LOAD_FAST 0 (x0)

 27 LOAD_FAST 1 (v0)

 30 LOAD_FAST 2 (t)

 33 BINARY_MULTIPLY

 34 BINARY_ADD

 35 LOAD_CONST 5 (0.5)

 38 LOAD_FAST 3 (a)

 41 BINARY_MULTIPLY

 42 LOAD_FAST 2 (t)

 45 BINARY_MULTIPLY

 46 LOAD_FAST 2 (t)

 49 BINARY_MULTIPLY

 50 BINARY_ADD

 51 RETURN_VALUE

Page 9. NETID:

7. (12 points) ​ ​Write the UNIX command(s) corresponding to ​XXXX​ in the transcript
below. You may use ​echo​ once.

bash-4.4$ ls

final.py

bash-4.4$ ls . > a

bash-4.4$ ​cp a b
bash-4.4$ ls -l

total 4

-rw-rw-r-- 1 sbs5 sbs5 11 Apr 26 13:42 a

-rw-rw-r-- 1 sbs5 sbs5 11 Apr 26 13:42 b

-rwxr-x--- 1 sbs5 sbs5 205 Apr 26 13:36 final.py

bash-4.4$ ​mkdir c
bash-4.4$ ls

a b c final.py

bash-4.4$ ​file c
c: directory

bash-4.4$ ​sleep 30 &
[1] 26538

bash-4.4$ ​ps
 PID TTY TIME CMD

26047 pts/0 00:00:00 bash

26538 pts/0 00:00:00 sleep

26539 pts/0 00:00:00 ps

bash-4.4$ ​jobs
[1]+ Running sleep 30 &

bash-4.4$ ​chmod 700 b
[1]+ Done sleep 30

bash-4.4$ ls -l

total 8

-rw-rw-r-- 1 sbs5 sbs5 11 Apr 26 13:42 a

-rwx------ 1 sbs5 sbs5 11 Apr 26 13:42 b

drwxrwxr-x 2 sbs5 sbs5 4096 Apr 26 13:42 c

-rwxr-x--- 1 sbs5 sbs5 205 Apr 26 13:36 final.py

bash-4.4$ ​rmdir c
bash-4.4$ ls

a b final.py

bash-4.4$ ​HELLO=$(ls)
bash-4.4$ echo $HELLO

a b final.py

bash-4.4$ ​alias whatsup=date
bash-4.4$ whatsup

Thu Apr 26 13:57:26 EDT 2018

Page 10. NETID:

bash-4.4$ whatsup

Thu Apr 26 13:57:38 EDT 2018

bash-4.4$ ​echo $PATH
/usr/libexec/python3-sphinx:/usr/lib64/qt-3.3/bin:/opt/pgi/linux86-64

/17.4/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin

bash-4.4$ cat a

a

final.py

bash-4.4$ ls

a b final.py

bash-4.4$ ​ls >> a
bash-4.4$ diff a b

3,5d2

< a

< b

< final.py

bash-4.4$ ls -l

total 4

-rw-rw-r-- 1 sbs5 sbs5 24 Apr 26 14:00 a

-rwx------ 1 sbs5 sbs5 11 Apr 26 13:42 b

-rwxr-x--- 1 sbs5 sbs5 205 Apr 26 13:36 final.py

Page 11. NETID:

8. (12 points) Python exceptions and decorators

Write a Python decorator function ​safe(func) ​ that lets a function raise an exception without
halting execution. If no exception is raised, the decorated function returns the appropriate
value. If an exception is raised, the message “Something bad happened.” is printed. In both
cases, the message “All done.” appears. Here are some examples.

@safe

def f(d):

 return 100//d

@safe

def lookup(key):

 d = {'one': 1}

 return d[key]

>>> f(10)

All done.

10

>>> f(0)

Something bad happened.

All done.

>>> lookup('one')

All done.

1

>>> lookup('two')

Something bad happened.

All done.

def safe(func):

 def f(*args):

 try:

 result = func(*args)

 except:

 print ("Something bad happened.")

 else:

 return result

 finally:

 print ("All done.")

 return f

Page 12. NETID:

9. (12 points)

Regular expressions. Fill in the following grid, marking an X in each square in which a pattern
matches the indexed string. Example: the column for the first string, ‘aaa’, is filled in.

Regular expressions. Fill in the following grid, marking an X in each square in which a pattern
matches the indexed string. Example: the column for the first string, 'xxx', is filled in.

Patterns 1 2 3 4 5 6 7 8 9 10 Strings:

'xx' X 1 'xxx'

'^x+' X 2 ''

'...', X X X X X X X X X 3 '345'

'^\...' X X 4 '.A4'

'^\w\w\w' X x x x x 5 '789'

'^[a-z]' X x 6 ' 456 '

'^[^a-z]' x X x x X x x 7 'ABC'

'\w\W\w’ 8 '...'

'^[0-7]+$' X 9 ' '

'^[0-9A-Fa-f]+$' X X X X 10 'abcdef'

'^[A-Z]*$' X x

'^\s.+\s$' X X

'^\d.\d$' X X

Page 13. NETID:

10. (12 points)

For each of the following three shell scripts, write their output when invoked as indicated. (3
points each)

10.a.
#! /usr/bin/bash

s1.sh

dkdkdkd &> /dev/null

R1=$?

date > /dev/null

R2=$?

echo $((R1 < R2))

bash-4.4$./s1.sh

0

10.b.
#! /usr/bin/bash

s2.sh

X=$(($1 + $2 - $3))

echo $X

bash-4.4$./s2.sh 1 2 3 4 5

0

bash-4.4$./s2.sh 5 4 3 2 1

6

Page 14. NETID:

10.c.

#! /usr/bin/bash

s3.sh

s=0

for f in $*; do

 if (($f > $s)); then

 s=$f

 fi

done

echo $s

bash-4.4$./s3.sh

0

bash-4.4$./s3.sh 1 2 3 4 5 6

6

10.d. Write a shell script which has the following behavior. It prints information about the last
time the user logged into this machine. (3 points)

bash-4.4$./s4.sh

sbs5 pts/2 172.28.20.216 Fri Apr 13 10:30 - 11:21 (00:50)

#! /usr/bin/bash

sh4.sh

last | grep $USER | tail -1

Page 15. NETID:

