
4

Sorting and Searching

Typical computer science students study the basic sorting algorithms at least three
times before they graduate: first in introductory programming, then in data struc-
tures, and finally in their algorithms course. Why is sorting worth so much atten-
tion? There are several reasons:

• Sorting is the basic building block that many other algorithms are built
around. By understanding sorting, we obtain an amazing amount of power
to solve other problems.

• Most of the interesting ideas used in the design of algorithms appear in the
context of sorting, such as divide-and-conquer, data structures, and random-
ized algorithms.

• Computers have historically spent more time sorting than doing anything
else. A quarter of all mainframe cycles were spent sorting data [Knu98]. Sort-
ing remains the most ubiquitous combinatorial algorithm problem in practice.

• Sorting is the most thoroughly studied problem in computer science. Liter-
ally dozens of different algorithms are known, most of which possess some
particular advantage over all other algorithms in certain situations.

In this chapter, we will discuss sorting, stressing how sorting can be applied to
solving other problems. In this sense, sorting behaves more like a data structure
than a problem in its own right. We then give detailed presentations of several
fundamental algorithms: heapsort, mergesort, quicksort, and distribution sort as
examples of important algorithm design paradigms. Sorting is also represented by
Section 14.1 (page 436) in the problem catalog.

S.S. Skiena, The Algorithm Design Manual, 2nd ed., DOI: 10.1007/978-1-84800-070-4 4,
c© Springer-Verlag London Limited 2008

104 4 . SORTING AND SEARCHING

4.1 Applications of Sorting

We will review several sorting algorithms and their complexities over the course of
this chapter. But the punch-line is this: clever sorting algorithms exist that run in
O(n log n). This is a big improvement over naive O(n2) sorting algorithms for large
values of n. Consider the following table:

n n2/4 n lg n
10 25 33

100 2,500 664
1,000 250,000 9,965

10,000 25,000,000 132,877
100,000 2,500,000,000 1,660,960

You might still get away with using a quadratic-time algorithm even if n =
10, 000, but quadratic-time sorting is clearly ridiculous once n ≥ 100, 000.

Many important problems can be reduced to sorting, so we can use our clever
O(n log n) algorithms to do work that might otherwise seem to require a quadratic
algorithm. An important algorithm design technique is to use sorting as a basic
building block, because many other problems become easy once a set of items is
sorted.

Consider the following applications:

• Searching – Binary search tests whether an item is in a dictionary in O(log n)
time, provided the keys are all sorted. Search preprocessing is perhaps the
single most important application of sorting.

• Closest pair – Given a set of n numbers, how do you find the pair of numbers
that have the smallest difference between them? Once the numbers are sorted,
the closest pair of numbers must lie next to each other somewhere in sorted
order. Thus, a linear-time scan through them completes the job, for a total
of O(n log n) time including the sorting.

• Element uniqueness – Are there any duplicates in a given set of n items?
This is a special case of the closest-pair problem above, where we ask if there
is a pair separated by a gap of zero. The most efficient algorithm sorts the
numbers and then does a linear scan though checking all adjacent pairs.

• Frequency distribution – Given a set of n items, which element occurs the
largest number of times in the set? If the items are sorted, we can sweep
from left to right and count them, since all identical items will be lumped
together during sorting.

To find out how often an arbitrary element k occurs, look up k using binary
search in a sorted array of keys. By walking to the left of this point until the
first the element is not k and then doing the same to the right, we can find

4 .1 APPLICATIONS OF SORTING 105

Figure 4.1: The convex hull of a set of points (l), constructed by left-to-right insertion.

this count in O(log n + c) time, where c is the number of occurrences of k.
Even better, the number of instances of k can be found in O(log n) time by
using binary search to look for the positions of both k − ε and k + ε (where
ε is arbitrarily small) and then taking the difference of these positions.

• Selection – What is the kth largest item in an array? If the keys are placed
in sorted order, the kth largest can be found in constant time by simply
looking at the kth position of the array. In particular, the median element
(see Section 14.3 (page 445)) appears in the (n/2)nd position in sorted order.

• Convex hulls – What is the polygon of smallest area that contains a given
set of n points in two dimensions? The convex hull is like a rubber band
stretched over the points in the plane and then released. It compresses to
just cover the points, as shown in Figure 4.1(l). The convex hull gives a nice
representation of the shape of the points and is an important building block
for more sophisticated geometric algorithms, as discussed in the catalog in
Section 17.2 (page 568).

But how can we use sorting to construct the convex hull? Once you have the
points sorted by x-coordinate, the points can be inserted from left to right
into the hull. Since the right-most point is always on the boundary, we know
that it will appear in the hull. Adding this new right-most point may cause
others to be deleted, but we can quickly identify these points because they lie
inside the polygon formed by adding the new point. See the example in Figure
4.1(r). These points will be neighbors of the previous point we inserted, so
they will be easy to find and delete. The total time is linear after the sorting
has been done.

While a few of these problems (namely median and selection) can be solved in
linear time using more sophisticated algorithms, sorting provides quick and easy
solutions to all of these problems. It is a rare application where the running time

106 4 . SORTING AND SEARCHING

of sorting proves to be the bottleneck, especially a bottleneck that could have
otherwise been removed using more clever algorithmics. Never be afraid to spend
time sorting, provided you use an efficient sorting routine.

Take-Home Lesson: Sorting lies at the heart of many algorithms. Sorting the
data is one of the first things any algorithm designer should try in the quest
for efficiency.

Stop and Think: Finding the Intersection

Problem: Give an efficient algorithm to determine whether two sets (of size m and
n, respectively) are disjoint. Analyze the worst-case complexity in terms of m and
n, considering the case where m is substantially smaller than n.

Solution: At least three algorithms come to mind, all of which are variants of
sorting and searching:

• First sort the big set – The big set can be sorted in O(n log n) time. We can
now do a binary search with each of the m elements in the second, looking
to see if it exists in the big set. The total time will be O((n + m) log n).

• First sort the small set – The small set can be sorted in O(m log m) time. We
can now do a binary search with each of the n elements in the big set, looking
to see if it exists in the small one. The total time will be O((n + m) log m).

• Sort both sets – Observe that once the two sets are sorted, we no longer
have to do binary search to detect a common element. We can compare the
smallest elements of the two sorted sets, and discard the smaller one if they
are not identical. By repeating this idea recursively on the now smaller sets,
we can test for duplication in linear time after sorting. The total cost is
O(n log n + m log m + n + m).

So, which of these is the fastest method? Clearly small-set sorting trumps big-
set sorting, since log m < log n when m < n. Similarly, (n + m) log m must be
asymptotically less than n log n, since n + m < 2n when m < n. Thus, sorting the
small set is the best of these options. Note that this is linear when m is constant
in size.

Note that expected linear time can be achieved by hashing. Build a hash table
containing the elements of both sets, and verify that collisions in the same bucket
are in fact identical elements. In practice, this may be the best solution.

4 .2 PRAGMATICS OF SORTING 107

4.2 Pragmatics of Sorting

We have seen many algorithmic applications of sorting, and we will see several
efficient sorting algorithms. One issue stands between them: in what order do we
want our items sorted?

The answers to this basic question are application-specific. Consider the follow-
ing considerations:

• Increasing or decreasing order? – A set of keys S are sorted in ascending
order when Si ≤ Si+1 for all 1 ≤ i < n. They are in descending order when
Si ≥ Si+1 for all 1 ≤ i < n. Different applications call for different orders.

• Sorting just the key or an entire record? – Sorting a data set involves main-
taining the integrity of complex data records. A mailing list of names, ad-
dresses, and phone numbers may be sorted by names as the key field, but it
had better retain the linkage between names and addresses. Thus, we need
to specify which field is the key field in any complex record, and understand
the full extent of each record.

• What should we do with equal keys? Elements with equal key values will all
bunch together in any total order, but sometimes the relative order among
these keys matters. Suppose an encyclopedia contains both Michael Jordan
(the basketball player) and Michael Jordan (the statistician). Which entry
should appear first? You may need to resort to secondary keys, such as article
size, to resolve ties in a meaningful way.

Sometimes it is required to leave the items in the same relative order as in
the original permutation. Sorting algorithms that automatically enforce this
requirement are called stable. Unfortunately few fast algorithms are stable.
Stability can be achieved for any sorting algorithm by adding the initial
position as a secondary key.

Of course we could make no decision about equal key order and let the ties fall
where they may. But beware, certain efficient sort algorithms (such as quick-
sort) can run into quadratic performance trouble unless explicitly engineered
to deal with large numbers of ties.

• What about non-numerical data? – Alphabetizing is the sorting of text strings.
Libraries have very complete and complicated rules concerning the relative
collating sequence of characters and punctuation. Is Skiena the same key as
skiena? Is Brown-Williams before or after Brown America, and before or after
Brown, John?

The right way to specify such matters to your sorting algorithm is with an
application-specific pairwise-element comparison function. Such a comparison func-
tion takes pointers to record items a and b and returns “<” if a < b, “>” if a > b,
or “=” if a = b.

108 4 . SORTING AND SEARCHING

By abstracting the pairwise ordering decision to such a comparison function, we
can implement sorting algorithms independently of such criteria. We simply pass
the comparison function in as an argument to the sort procedure. Any reasonable
programming language has a built-in sort routine as a library function. You are
almost always better off using this than writing your own routine. For example,
the standard library for C contains the qsort function for sorting:

#include <stdlib.h>

void qsort(void *base, size_t nel, size_t width,
int (*compare) (const void *, const void *));

The key to using qsort is realizing what its arguments do. It sorts the first nel
elements of an array (pointed to by base), where each element is width-bytes long.
Thus we can sort arrays of 1-byte characters, 4-byte integers, or 100-byte records,
all by changing the value of width.

The ultimate desired order is determined by the compare function. It takes as
arguments pointers to two width-byte elements, and returns a negative number if
the first belongs before the second in sorted order, a positive number if the second
belongs before the first, or zero if they are the same. Here is a comparison function
to sort integers in increasing order:

int intcompare(int *i, int *j)
{

if (*i > *j) return (1);
if (*i < *j) return (-1);
return (0);

}

This comparison function can be used to sort an array a, of which the first n
elements are occupied, as follows:

qsort(a, n, sizeof(int), intcompare);

qsort suggests that quicksort is the algorithm implemented in this library func-
tion, although this is usually irrelevant to the user.

4.3 Heapsort: Fast Sorting via Data Structures

Sorting is a natural laboratory for studying algorithm design paradigms, since many
useful techniques lead to interesting sorting algorithms. The next several sections
will introduce algorithmic design techniques motivated by particular sorting algo-
rithms.

4 .3 HEAPSORT: FAST SORTING VIA DATA STRUCTURES 109

The alert reader should ask why we review the standard sorting when you
are better off not implementing them and using built-in library functions instead.
The answer is that the design techniques are very important for other algorithmic
problems you are likely to encounter.

We start with data structure design, because one of the most dramatic algo-
rithmic improvements via appropriate data structures occurs in sorting. Selection
sort is a simple-to-code algorithm that repeatedly extracts the smallest remaining
element from the unsorted part of the set:

SelectionSort(A)
For i = 1 to n do

Sort[i] = Find-Minimum from A
Delete-Minimum from A

Return(Sort)

A C language implementation of selection sort appeared back in Section 2.5.1
(page 41). There we partitioned the input array into sorted and unsorted regions. To
find the smallest item, we performed a linear sweep through the unsorted portion
of the array. The smallest item is then swapped with the ith item in the array
before moving on to the next iteration. Selection sort performs n iterations, where
the average iteration takes n/2 steps, for a total of O(n2) time.

But what if we improve the data structure? It takes O(1) time to remove a
particular item from an unsorted array once it has been located, but O(n) time
to find the smallest item. These are exactly the operations supported by priority
queues. So what happens if we replace the data structure with a better priority
queue implementation, either a heap or a balanced binary tree? Operations within
the loop now take O(log n) time each, instead of O(n). Using such a priority queue
implementation speeds up selection sort from O(n2) to O(n log n).

The name typically given to this algorithm, heapsort, obscures the relationship
between them, but heapsort is nothing but an implementation of selection sort
using the right data structure.

4.3.1 Heaps

Heaps are a simple and elegant data structure for efficiently supporting the priority
queue operations insert and extract-min. They work by maintaining a partial order
on the set of elements which is weaker than the sorted order (so it can be efficient
to maintain) yet stronger than random order (so the minimum element can be
quickly identified).

Power in any hierarchically-structured organization is reflected by a tree, where
each node in the tree represents a person, and edge (x, y) implies that x directly
supervises (or dominates) y. The fellow at the root sits at the “top of the heap.”

In this spirit, a heap-labeled tree is defined to be a binary tree such that the
key labeling of each node dominates the key labeling of each of its children. In a

110 4 . SORTING AND SEARCHING

4

6

7

1

2

5

10

3

8

9

1941

2001

1918

1963

1804

1945

1865

1492

1783

1776

1783

2001 1941

1865

1918

1492

1804

1776

1945 1963

Figure 4.2: A heap-labeled tree of important years from American history (l), with the corre-
sponding implicit heap representation (r)

min-heap, a node dominates its children by containing a smaller key than they do,
while in a max-heap parent nodes dominate by being bigger. Figure 4.2(l) presents
a min-heap ordered tree of red-letter years in American history (kudos to you if
you can recall what happened each year).

The most natural implementation of this binary tree would store each key in
a node with pointers to its two children. As with binary search trees, the memory
used by the pointers can easily outweigh the size of keys, which is the data we are
really interested in.

The heap is a slick data structure that enables us to represent binary trees
without using any pointers. We will store data as an array of keys, and use the
position of the keys to implicitly satisfy the role of the pointers.

We will store the root of the tree in the first position of the array, and its left
and right children in the second and third positions, respectively. In general, we

typedef struct {
item_type q[PQ_SIZE+1]; /* body of queue */
int n; /* number of queue elements */

} priority_queue;

What is especially nice about this representation is that the positions of the
parent and children of the key at position k are readily determined. The left child
of k sits in position 2k and the right child in 2k + 1, while the parent of k holds

will store the 2l−1 keys of the lth level of a complete binary tree from left-to-right
in positions 2l−1 to 2l − 1, as shown in Figure 4.2(r). We assume that the array
starts with index 1 to simplify matters.

court in position 	k/2
. Thus we can move around the tree without any pointers.

4 .3 HEAPSORT: FAST SORTING VIA DATA STRUCTURES 111

pq_parent(int n)
{

if (n == 1) return(-1);
else return((int) n/2); /* implicitly take floor(n/2) */

}

pq_young_child(int n)
{

return(2 * n);
}

So, we can store any binary tree in an array without pointers. What is the
catch? Suppose our height h tree was sparse, meaning that the number of nodes
n < 2h. All missing internal nodes still take up space in our structure, since we must
represent a full binary tree to maintain the positional mapping between parents
and children.

Space efficiency thus demands that we not allow holes in our tree—i.e., that each
level be packed as much as it can be. If so, only the last level may be incomplete.
By packing the elements of the last level as far to the left as possible, we can
represent an n-key tree using exactly n elements of the array. If we did not enforce
these structural constraints, we might need an array of size 2n to store the same
elements. Since all but the last level is always filled, the height h of an n element
heap is logarithmic because:

h∑
i=0

2i = 2h+1 − 1 ≥ n

so h = 	lg n
.
This implicit representation of binary trees saves memory, but is less flexible

than using pointers. We cannot store arbitrary tree topologies without wasting
large amounts of space. We cannot move subtrees around by just changing a single
pointer, only by explicitly moving each of the elements in the subtree. This loss of
flexibility explains why we cannot use this idea to represent binary search trees,
but it works just fine for heaps.

Stop and Think: Who’s where in the heap?

Problem: How can we efficiently search for a particular key in a heap?

Solution: We can’t. Binary search does not work because a heap is not a binary
search tree. We know almost nothing about the relative order of the n/2 leaf ele-
ments in a heap—certainly nothing that lets us avoid doing linear search through
them.

112 4 . SORTING AND SEARCHING

4.3.2 Constructing Heaps

Heaps can be constructed incrementally, by inserting each new element into the
left-most open spot in the array, namely the (n + 1)st position of a previously
n-element heap. This ensures the desired balanced shape of the heap-labeled tree,
but does not necessarily maintain the dominance ordering of the keys. The new
key might be less than its parent in a min-heap, or greater than its parent in a
max-heap.

The solution is to swap any such dissatisfied element with its parent. The old
parent is now happy, because it is properly dominated. The other child of the old
parent is still happy, because it is now dominated by an element even more extreme
than its previous parent. The new element is now happier, but may still dominate
its new parent. We now recur at a higher level, bubbling up the new key to its
proper position in the hierarchy. Since we replace the root of a subtree by a larger
one at each step, we preserve the heap order elsewhere.

pq_insert(priority_queue *q, item_type x)
{

if (q->n >= PQ_SIZE)
printf("Warning: priority queue overflow insert x=%d\n",x);

else {
q->n = (q->n) + 1;
q->q[q->n] = x;
bubble_up(q, q->n);

}
}

bubble_up(priority_queue *q, int p)
{

if (pq_parent(p) == -1) return; /* at root of heap, no parent */

if (q->q[pq_parent(p)] > q->q[p]) {
pq_swap(q,p,pq_parent(p));
bubble_up(q, pq_parent(p));

}
}

This swap process takes constant time at each level. Since the height of an n-
element heap is 	lg n
, each insertion takes at most O(log n) time. Thus an initial
heap of n elements can be constructed in O(n log n) time through n such insertions:

pq_init(priority_queue *q)
{

q->n = 0;
}

4 .3 HEAPSORT: FAST SORTING VIA DATA STRUCTURES 113

make_heap(priority_queue *q, item_type s[], int n)
{

int i; /* counter */

pq_init(q);
for (i=0; i<n; i++)

pq_insert(q, s[i]);
}

4.3.3 Extracting the Minimum

The remaining priority queue operations are identifying and deleting the dominant
element. Identification is easy, since the top of the heap sits in the first position of
the array.

Removing the top element leaves a hole in the array. This can be filled by
moving the element from the right-most leaf (sitting in the nth position of the
array) into the first position.

The shape of the tree has been restored but (as after insertion) the labeling of
the root may no longer satisfy the heap property. Indeed, this new root may be
dominated by both of its children. The root of this min-heap should be the smallest
of three elements, namely the current root and its two children. If the current root
is dominant, the heap order has been restored. If not, the dominant child should
be swapped with the root and the problem pushed down to the next level.

This dissatisfied element bubbles down the heap until it dominates all its chil-
dren, perhaps by becoming a leaf node and ceasing to have any. This percolate-down
operation is also called heapify, because it merges two heaps (the subtrees below
the original root) with a new key.

item_type extract_min(priority_queue *q)
{

int min = -1; /* minimum value */

if (q->n <= 0) printf("Warning: empty priority queue.\n");
else {

min = q->q[1];

q->q[1] = q->q[q->n];
q->n = q->n - 1;
bubble_down(q,1);

}

return(min);
}

114 4 . SORTING AND SEARCHING

bubble_down(priority_queue *q, int p)
{

int c; /* child index */
int i; /* counter */
int min_index; /* index of lightest child */

c = pq_young_child(p);
min_index = p;

for (i=0; i<=1; i++)
if ((c+i) <= q->n) {

if (q->q[min_index] > q->q[c+i]) min_index = c+i;
}

if (min_index != p) {
pq_swap(q,p,min_index);
bubble_down(q, min_index);

}
}

We will reach a leaf after 	lg n
 bubble down steps, each constant time. Thus
root deletion is completed in O(log n) time.

Exchanging the maximum element with the last element and calling heapify
repeatedly gives an O(n log n) sorting algorithm, named Heapsort.

heapsort(item_type s[], int n)
{

int i; /* counters */
priority_queue q; /* heap for heapsort */

make_heap(&q,s,n);

for (i=0; i<n; i++)
s[i] = extract_min(&q);

}

Heapsort is a great sorting algorithm. It is simple to program; indeed, the
complete implementation has been presented above. It runs in worst-case O(n log n)
time, which is the best that can be expected from any sorting algorithm. It is an in-
place sort, meaning it uses no extra memory over the array containing the elements
to be sorted. Although other algorithms prove slightly faster in practice, you won’t
go wrong using heapsort for sorting data that sits in the computer’s main memory.

4 .3 HEAPSORT: FAST SORTING VIA DATA STRUCTURES 115

Priority queues are very useful data structures. Recall they were the hero of
the war story described in Section 3.6 (page 85). A complete set of priority queue
implementations is presented in catalog Section 12.2 (page 373).

4.3.4 Faster Heap Construction (*)

As we have seen, a heap can be constructed on n elements by incremental insertion
in O(n log n) time. Surprisingly, heaps can be constructed even faster by using our
bubble down procedure and some clever analysis.

Suppose we pack the n keys destined for our heap into the first n elements of
our priority-queue array. The shape of our heap will be right, but the dominance
order will be all messed up. How can we restore it?

Consider the array in reverse order, starting from the last (nth) position. It
represents a leaf of the tree and so dominates its nonexistent children. The same
is the case for the last n/2 positions in the array, because all are leaves. If we
continue to walk backwards through the array we will finally encounter an internal
node with children. This element may not dominate its children, but its children
represent well-formed (if small) heaps.

This is exactly the situation the bubble down procedure was designed to handle,
restoring the heap order of arbitrary root element sitting on top of two sub-heaps.
Thus we can create a heap by performing n/2 non-trivial calls to the bubble down
procedure:

make_heap(priority_queue *q, item_type s[], int n)
{

int i; /* counter */

q->n = n;
for (i=0; i<n; i++) q->q[i+1] = s[i];

}

Multiplying the number of calls to bubble down (n) times an upper bound on
the cost of each operation (O(log n)) gives us a running time analysis of O(n log n).
This would make it no faster than the incremental insertion algorithm described
above.

But note that it is indeed an upper bound, because only the last insertion will
actually take 	lg n
 steps. Recall that bubble down takes time proportional to the
height of the heaps it is merging. Most of these heaps are extremely small. In a
full binary tree on n nodes, there are n/2 nodes that are leaves (i.e., height 0), n/4

for (i=q->n/2; i>=1; i--) bubble_down(q,i);

116 4 . SORTING AND SEARCHING

nodes that are height 1, n/8 nodes that are height 2, and so on. In general, there
are at most �n/2h+1� nodes of height h, so the cost of building a heap is:

�lg n�∑
h=0

�n/2h+1�h ≤ n

�lg n�∑
h=0

h/2h ≤ 2n

Since this sum is not quite a geometric series, we can’t apply the usual identity
to get the sum, but rest assured that the puny contribution of the numerator (h)
is crushed by the denominator (2h). The series quickly converges to linear.

Does it matter that we can construct heaps in linear time instead of O(n log n)?
Usually not. The construction time did not dominate the complexity of heapsort,
so improving the construction time does not improve its worst-case performance.
Still, it is an impressive display of the power of careful analysis, and the free lunch
that geometric series convergence can sometimes provide.

Stop and Think: Where in the Heap?

Problem: Given an array-based heap on n elements and a real number x, efficiently
determine whether the kth smallest element in the heap is greater than or equal
to x. Your algorithm should be O(k) in the worst-case, independent of the size of
the heap. Hint: you do not have to find the kth smallest element; you need only
determine its relationship to x.

Solution: There are at least two different ideas that lead to correct but inefficient
algorithms for this problem:

1. Call extract-min k times, and test whether all of these are less than x. This
explicitly sorts the first k elements and so gives us more information than
the desired answer, but it takes O(k log n) time to do so.

2. The kth smallest element cannot be deeper than the kth level of the heap,
since the path from it to the root must go through elements of decreasing
value. Thus we can look at all the elements on the first k levels of the heap,
and count how many of them are less than x, stopping when we either find k
of them or run out of elements. This is correct, but takes O(min(n, 2k)) time,
since the top k elements have 2k elements.

An O(k) solution can look at only k elements smaller than x, plus at most O(k)
elements greater than x. Consider the following recursive procedure, called at the
root with i = 1 with count = k:

4 .3 HEAPSORT: FAST SORTING VIA DATA STRUCTURES 117

int heap_compare(priority_queue *q, int i, int count, int x)
{

if (q->q[i] < x) {
count = heap_compare(q, pq_young_child(i), count-1, x);
count = heap_compare(q, pq_young_child(i)+1, count, x);

}

return(count);
}

If the root of the min-heap is ≥ x, then no elements in the heap can be less than
x, as by definition the root must be the smallest element. This procedure searches
the children of all nodes of weight smaller than x until either (a) we have found
k of them, when it returns 0, or (b) they are exhausted, when it returns a value
greater than zero. Thus it will find enough small elements if they exist.

But how long does it take? The only nodes whose children we look at are those
< x, and at most k of these in total. Each have at most visited two children, so we
visit at most 3k nodes, for a total time of O(k).

4.3.5 Sorting by Incremental Insertion

Now consider a different approach to sorting via efficient data structures. Select an
arbitrary element from the unsorted set, and put it in the proper position in the
sorted set.

InsertionSort(A)
A[0] = −∞
for i = 2 to n do

j = i
while (A[j] < A[j − 1]) do

swap(A[j], A[j − 1])
j = j − 1

A C language implementation of insertion sort appeared in Section 2.5.2 (page
43). Although insertion sort takes O(n2) in the worst case, it performs considerably
better if the data is almost sorted, since few iterations of the inner loop suffice to
sift it into the proper position.

Insertion sort is perhaps the simplest example of the incremental insertion tech-
nique, where we build up a complicated structure on n items by first building it on
n−1 items and then making the necessary changes to add the last item. Incremental
insertion proves a particularly useful technique in geometric algorithms.

if ((count <= 0) || (i > q->n)) return(count);

118 4 . SORTING AND SEARCHING

Note that faster sorting algorithms based on incremental insertion follow from
more efficient data structures. Insertion into a balanced search tree takes O(log n)
per operation, or a total of O(n log n) to construct the tree. An in-order traversal
reads through the elements in sorted order to complete the job in linear time.

4.4 War Story: Give me a Ticket on an Airplane

I came into this particular job seeking justice. I’d been retained by an air travel
company to help design an algorithm to find the cheapest available airfare from
city x to city y. Like most of you, I suspect, I’d been baffled at the crazy price
fluctuations of ticket prices under modern “yield management.” The price of flights
seems to soar far more efficiently than the planes themselves. The problem, it
seemed to me, was that airlines never wanted to show the true cheapest price. By
doing my job right, I could make damned sure they would show it to me next time.

“Look,” I said at the start of the first meeting. “This can’t be so hard. Construct
a graph with vertices corresponding to airports, and add an edge between each
airport pair (u, v) which shows a direct flight from u to v. Set the weight of this
edge equal to the cost of the cheapest available ticket from u to v. Now the cheapest
fair from x to y is given by the shortest x-y path in this graph. This path/fare can
be found using Dijkstra’s shortest path algorithm. Problem solved!” I announced,
waiving my hand with a flourish.

The assembled cast of the meeting nodded thoughtfully, then burst out laugh-
ing. It was I who needed to learn something about the overwhelming complexity
of air travel pricing. There are literally millions of different fares available at any
time, with prices changing several times daily. Restrictions on the availability of a
particular fare in a particular context is enforced by a complicated set of pricing
rules. These rules are an industry-wide kludge—a complicated structure with little
in the way of consistent logical principles, which is exactly what we would need to
search efficiently for the minimum fare. My favorite rule exceptions applied only to
the country of Malawi. With a population of only 12 million and per-capita income
of $596 (179th in the world), they prove to be an unexpected powerhouse shaping
world aviation price policy. Accurately pricing any air itinerary requires at least
implicit checks to ensure the trip doesn’t take us through Malawi.

Part of the real problem is that there can easily be 100 different fares for the first
flight leg, say from Los Angeles (LAX) to Chicago (ORD), and a similar number for
each subsequent leg, say from Chicago to New York (JFK). The cheapest possible
LAX-ORD fare (maybe an AARP children’s price) might not be combinable with
the cheapest ORD-JFK fare (perhaps a pre-Ramadan special that can only be used
with subsequent connections to Mecca).

After being properly chastised for oversimplifying the problem, I got down to
work. I started by reducing the problem to the simplest interesting case. “So, you

4 .4 WAR STORY: GIVE ME A TICKET ON AN AIRPLANE 119

X+Y
$150 (1,1)

$160 (2,1)

$235 (2,3)

$255 (3,3)

$225 (1,3)

$205 (2,3)

$185 (2,2)

$180 (3,1)

$175 (1,2)
$100

$110

$130

X
$50

$75

$125

Y

Figure 4.3: Sorting the pairwise sums of lists X and Y .

need to find the cheapest two-hop fare that passes your rule tests. Is there a way
to decide in advance which pairs will pass without explicitly testing them?”

“No, there is no way to tell,” they assured me. “We can only consult a
black box routine to decide whether a particular price is available for the given
itinerary/travelers.”

“So our goal is to call this black box on the fewest number of combinations.
This means evaluating all possible fare combinations in order from cheapest to
most expensive, and stopping as soon as we encounter the first legal combination.”

“Right.”
“Why not construct the m× n possible price pairs, sort them in terms of cost,

and evaluate them in sorted order? Clearly this can be done in O(nm log(nm))
time.”1

“That is basically what we do now, but it is quite expensive to construct the
full set of m × n pairs, since the first one might be all we need.”

I caught a whiff of an interesting problem. “So what you really want is an
efficient data structure to repeatedly return the next most expensive pair without
constructing all the pairs in advance.”

This was indeed an interesting problem. Finding the largest element in a set
under insertion and deletion is exactly what priority queues are good for. The catch
here is that we could not seed the priority queue with all values in advance. We
had to insert new pairs into the queue after each evaluation.

I constructed some examples, like the one in Figure 4.3. We could represent
each fare by the list indexes of its two components. The cheapest single fare will
certainly be constructed by adding up the cheapest component from both lists,

1The question of whether all such sums can be sorted faster than nm arbitrary integers is a notorious open
problem in algorithm theory. See [Fre76, Lam92] for more on X + Y sorting, as the problem is known.

120 4 . SORTING AND SEARCHING

described (1, 1). The second cheapest fare would be made from the head of one
list and the second element of another, and hence would be either (1, 2) or (2, 1).
Then it gets more complicated. The third cheapest could either be the unused pair
above or (1, 3) or (3, 1). Indeed it would have been (3, 1) in the example above if
the third fare of X had been $120.

“Tell me,” I asked. “Do we have time to sort the two respective lists of fares in
increasing order?”

“Don’t have to.” the leader replied. “They come out in sorted order from the
database.”

Good news. That meant there was a natural order to the pair values. We never
need to evaluate the pairs (i + 1, j) or (i, j + 1) before (i, j), because they clearly
define more expensive fares.

“Got it!,” I said. “We will keep track of index pairs in a priority queue, with the
sum of the fare costs as the key for the pair. Initially we put only pair (1, 1) on the
queue. If it proves it is not feasible, we put its two successors on—namely (1, 2) and
(2, 1). In general, we enqueue pairs (i+1, j) and (i, j +1) after evaluating/rejecting
pair (i, j). We will get through all the pairs in the right order if we do so.”

The gang caught on quickly. “Sure. But what about duplicates? We will con-
struct pair (x, y) two different ways, both when expanding (x−1, y) and (x, y−1).”

“You are right. We need an extra data structure to guard against duplicates.
The simplest might be a hash table to tell us whether a given pair exists in the
priority queue before we insert a duplicate. In fact, we will never have more than n
active pairs in our data structure, since there can only be one pair for each distinct
value of the first coordinate.”

And so it went. Our approach naturally generalizes to itineraries with more
than two legs, (a complexity which grows with the number of legs). The best-
first evaluation inherent in our priority queue enabled the system to stop as soon
as it found the provably cheapest fare. This proved to be fast enough to provide
interactive response to the user. That said, I haven’t noticed my travel tickets
getting any cheaper.

4.5 Mergesort: Sorting by Divide-and-Conquer

Recursive algorithms reduce large problems into smaller ones. A recursive approach
to sorting involves partitioning the elements into two groups, sorting each of the
smaller problems recursively, and then interleaving the two sorted lists to totally
order the elements. This algorithm is called mergesort, recognizing the importance
of the interleaving operation:

Mergesort(A[1, n])
Merge(MergeSort(A[1, 	n/2
]), MergeSort(A[n/2
 + 1, n]))

The basis case of the recursion occurs when the subarray to be sorted consists
of a single element, so no rearrangement is possible. A trace of the execution of

4 .5 MERGESORT: SORTING BY DIVIDE-AND-CONQUER 121

M E R G E S O R T

M E R G E S O R T

M E R G E S O R T

M E

M E

E M

TROSEG

E M R

R

E E G M O R R S T

O R S TE E G M R

R TO SE G

Figure 4.4: Animation of mergesort in action

mergesort is given in Figure 4.4. Picture the action as it happens during an in-
order traversal of the top tree, with the array-state transformations reported in
the bottom, reflected tree.

The efficiency of mergesort depends upon how efficiently we combine the two
sorted halves into a single sorted list. We could concatenate them into one list and
call heapsort or some other sorting algorithm to do it, but that would just destroy
all the work spent sorting our component lists.

Instead we can merge the two lists together. Observe that the smallest overall
item in two lists sorted in increasing order (as above) must sit at the top of one
of the two lists. This smallest element can be removed, leaving two sorted lists
behind—one slightly shorter than before. The second smallest item overall must
be atop one of these lists. Repeating this operation until both lists are empty
merges two sorted lists (with a total of n elements between them) into one, using
at most n − 1 comparisons or O(n) total work.

What is the total running time of mergesort? It helps to think about how much
work is done at each level of the execution tree. If we assume for simplicity that n
is a power of two, the kth level consists of all the 2k calls to mergesort processing
subranges of n/2k elements.

The work done on the (k = 0)th level involves merging two sorted lists, each of
size n/2, for a total of at most n− 1 comparisons. The work done on the (k = 1)th
level involves merging two pairs of sorted lists, each of size n/4, for a total of at
most n−2 comparisons. In general, the work done on the kth level involves merging
2k pairs sorted list, each of size n/2k+1, for a total of at most n− 2k comparisons.
Linear work is done merging all the elements on each level. Each of the n elements

122 4 . SORTING AND SEARCHING

appears in exactly one subproblem on each level. The most expensive case (in terms
of comparsions) is actually the top level.

The number of elements in a subproblem gets halved at each level. Thus the
number of times we can halve n until we get to 1 is �lg2 n�. Because the recursion
goes lg n levels deep, and a linear amount of work is done per level, mergesort takes
O(n log n) time in the worst case.

Mergesort is a great algorithm for sorting linked lists, because it does not rely on
random access to elements as does heapsort or quicksort. Its primary disadvantage
is the need for an auxilliary buffer when sorting arrays. It is easy to merge two
sorted linked lists without using any extra space, by just rearranging the pointers.
However, to merge two sorted arrays (or portions of an array), we need use a third
array to store the result of the merge to avoid stepping on the component arrays.
Consider merging {4, 5, 6} with {1, 2, 3}, packed from left to right in a single array.
Without a buffer, we would overwrite the elements of the top half during merging
and lose them.

Mergesort is a classic divide-and-conquer algorithm. We are ahead of the game
whenever we can break one large problem into two smaller problems, because the
smaller problems are easier to solve. The trick is taking advantage of the two
partial solutions to construct a solution of the full problem, as we did with the
merge operation.

Implementation

The divide-and-conquer mergesort routine follows naturally from the pseudocode:

mergesort(item_type s[], int low, int high)
{

int middle; /* index of middle element */

if (low < high) {
middle = (low+high)/2;
mergesort(s,low,middle);
mergesort(s,middle+1,high);
merge(s, low, middle, high);

}
}

More challenging turns out to be the details of how the merging is done. The
problem is that we must put our merged array somewhere. To avoid losing an
element by overwriting it in the course of the merge, we first copy each subarray
to a separate queue and merge these elements back into the array. In particular:

4 .6 QUICKSORT: SORTING BY RANDOMIZATION 123

merge(item_type s[], int low, int middle, int high)
{
int i; /* counter */
queue buffer1, buffer2; /* buffers to hold elements for merging */

init_queue(&buffer1);
init_queue(&buffer2);

for (i=low; i<=middle; i++) enqueue(&buffer1,s[i]);
for (i=middle+1; i<=high; i++) enqueue(&buffer2,s[i]);

i = low;
while (!(empty_queue(&buffer1) || empty_queue(&buffer2))) {

if (headq(&buffer1) <= headq(&buffer2))
s[i++] = dequeue(&buffer1);

else
s[i++] = dequeue(&buffer2);

}

while (!empty_queue(&buffer1)) s[i++] = dequeue(&buffer1);
while (!empty_queue(&buffer2)) s[i++] = dequeue(&buffer2);

}

4.6 Quicksort: Sorting by Randomization

Suppose we select a random item p from the n items we seek to sort. Quicksort
(shown in action in Figure 4.5) separates the n − 1 other items into two piles: a
low pile containing all the elements that appear before p in sorted order and a
high pile containing all the elements that appear after p in sorted order. Low and
high denote the array positions we place the respective piles, leaving a single slot
between them for p.

Such partitioning buys us two things. First, the pivot element p ends up in
the exact array position it will reside in the the final sorted order. Second, after
partitioning no element flops to the other side in the final sorted order. Thus we
can now sort the elements to the left and the right of the pivot independently! This
gives us a recursive sorting algorithm, since we can use the partitioning approach to
sort each subproblem. The algorithm must be correct since each element ultimately
ends up in the proper position:

124 4 . SORTING AND SEARCHING

Q U I C K S O R T

Q I C K S O R T U

Q I C K O R S T U

I C K O Q R S T U

I C K O Q R S T U

C I K O Q R S T U

Figure 4.5: Animation of quicksort in action

quicksort(item_type s[], int l, int h)
{

int p; /* index of partition */

if ((h-l)>0) {
p = partition(s,l,h);
quicksort(s,l,p-1);
quicksort(s,p+1,h);

}
}

We can partition the array in one linear scan for a particular pivot element
by maintaining three sections of the array: less than the pivot (to the left of
firsthigh), greater than or equal to the pivot (between firsthigh and i), and
unexplored (to the right of i), as implemented below:

int partition(item_type s[], int l, int h)
{

int i; /* counter */
int p; /* pivot element index */
int firsthigh; /* divider position for pivot element */

p = h;
firsthigh = l;
for (i=l; i<h; i++)

if (s[i] < s[p]) {
swap(&s[i],&s[firsthigh]);
firsthigh ++;

}
swap(&s[p],&s[firsthigh]);

return(firsthigh);
}

4 .6 QUICKSORT: SORTING BY RANDOMIZATION 125

Figure 4.6: The best-case (l) and worst-case (r) recursion trees for quicksort

Since the partitioning step consists of at most n swaps, it takes linear time in the
number of keys. But how long does the entire quicksort take? As with mergesort,
quicksort builds a recursion tree of nested subranges of the n-element array. As with
mergesort, quicksort spends linear time processing (now partitioning instead of
mergeing) the elements in each subarray on each level. As with mergesort, quicksort
runs in O(n · h) time, where h is the height of the recursion tree.

The difficulty is that the height of the tree depends upon where the pivot
element ends up in each partition. If we get very lucky and happen to repeatedly
pick the median element as our pivot, the subproblems are always half the size
of the previous level. The height represents the number of times we can halve n
until we get down to 1, or at most �lg2 n�. This happy situation is shown in Figure
4.6(l), and corresponds to the best case of quicksort.

Now suppose we consistently get unlucky, and our pivot element always splits
the array as unequally as possible. This implies that the pivot element is always
the biggest or smallest element in the sub-array. After this pivot settles into its
position, we are left with one subproblem of size n − 1. We spent linear work and
reduced the size of our problem by one measly element, as shown in Figure 4.6(r).
It takes a tree of height n− 1 to chop our array down to one element per level, for
a worst case time of Θ(n2).

Thus, the worst case for quicksort is worse than heapsort or mergesort. To
justify its name, quicksort had better be good in the average case. Understanding
why requires some intuition about random sampling.

4.6.1 Intuition: The Expected Case for Quicksort

The expected performance of quicksort depends upon the height of the partition
tree constructed by random pivot elements at each step. Mergesort ran in O(n log n)
time because we split the keys into two equal halves, sorted them recursively, and
then merged the halves in linear time. Thus, whenever our pivot element is near

get a good split and realize the same performance as mergesort.
the center of the sorted array (i.e., the pivot is close to the median element), we

126 4 . SORTING AND SEARCHING

1 n/4 3n/4 nn/2

Figure 4.7: Half the time, the pivot is close to the median element

I will give an intuitive explanation of why quicksort is O(n log n) in the average
case. How likely is it that a randomly selected pivot is a good one? The best possible
selection for the pivot would be the median key, because exactly half of elements
would end up left, and half the elements right, of the pivot. Unfortunately, we only
have a probability of 1/n of randomly selecting the median as pivot, which is quite
small.

sorted. Such good enough pivot elements are quite plentiful, since half the elements
lie closer to the middle than one of the two ends (see Figure 4.7). Thus, on each
selection we will pick a good enough pivot with probability of 1/2.

Can you flip a coin so it comes up tails each time? Not without cheating. If
you flip a fair coin n times, it will come out heads about half the time. Let heads
denote the chance of picking a good enough pivot.

The worst possible good enough pivot leaves the bigger half of the space partition
with 3n/4 items. What is the height hg of a quicksort partition tree constructed
repeatedly from the worst-possible good enough pivot? The deepest path through
this tree passes through partitions of size n, (3/4)n, (3/4)2n, . . ., down to 1. How
many times can we multiply n by 3/4 until it gets down to 1?

(3/4)hgn = 1 ⇒ n = (4/3)hg

so hg = log4/3 n.
But only half of all randomly selected pivots will be good enough. The rest we

classify as bad. The worst of these bad pivots will do essentially nothing to reduce
the partition size along the deepest path. The deepest path from the root through
a typical randomly-constructed quicksort partition tree will pass through roughly
equal numbers of good-enough and bad pivots. Since the expected number of good
splits and bad splits is the same, the bad splits can only double the height of the
tree, so h ≈ 2hg = 2 log4/3 n, which is clearly Θ(log n).

On average, random quicksort partition trees (and by analogy, binary search
trees under random insertion) are very good. More careful analysis shows the av-
erage height after n insertions is approximately 2 lnn. Since 2 ln n ≈ 1.386 lg2 n,
this is only 39% taller than a perfectly balanced binary tree. Since quicksort does
O(n) work partitioning on each level, the average time is O(n log n). If we are ex-
tremely unlucky and our randomly selected elements always are among the largest
or smallest element in the array, quicksort turns into selection sort and runs in
O(n2). However, the odds against this are vanishingly small.

space of keys—i.e., those ranked from n/4 to 3n/4 in the space of all keys to be
Suppose a key is a good enough pivot if it lies in the center half of the sorted

4 .6 QUICKSORT: SORTING BY RANDOMIZATION 127

4.6.2 Randomized Algorithms

There is an important subtlety about the expected case O(n log n) running time for
quicksort. Our quicksort implementation above selected the last element in each
sub-array as the pivot. Suppose this program were given a sorted array as input. If
so, at each step it would pick the worst possible pivot and run in quadratic time.

For any deterministic method of pivot selection, there exists a worst-case input
instance which will doom us to quadratic time. The analysis presented above made
no claim stronger than:

“Quicksort runs in Θ(n log n) time, with high probability, if you give
me randomly ordered data to sort.”

But now suppose we add an initial step to our algorithm where we randomly
permute the order of the n elements before we try to sort them. Such a permutation
can be constructed in O(n) time (see Section 13.7 for details). This might seem like
wasted effort, but it provides the guarantee that we can expect Θ(n log n) running
time whatever the initial input was. The worst case performance still can happen,
but it depends only upon how unlucky we are. There is no longer a well-defined
“worst case” input. We now can say

“Randomized quicksort runs in Θ(n log n) time on any input, with high
probability.”

Alternately, we could get the same guarantee by selecting a random element to be
the pivot at each step.

Randomization is a powerful tool to improve algorithms with bad worst-case
but good average-case complexity. It can be used to make algorithms more robust
to boundary cases and more efficient on highly structured input instances that
confound heuristic decisions (such as sorted input to quicksort). It often lends
itself to simple algorithms that provide randomized performance guarantees which
are otherwise obtainable only using complicated deterministic algorithms.

Proper analysis of randomized algorithms requires some knowledge of probabil-
ity theory, and is beyond the scope of this book. However, some of the approaches
to designing efficient randomized algorithms are readily explainable:

• Random sampling – Want to get an idea of the median value of n things but
don’t have either the time or space to look at them all? Select a small random
sample of the input and study those, for the results should be representative.

This is the idea behind opinion polling. Biases creep in unless you take a
truly random sample, as opposed to the first x people you happen to see. To
avoid bias, actual polling agencies typically dial random phone numbers and
hope someone answers.

• Randomized hashing – We have claimed that hashing can be used to imple-
ment dictionary operations in O(1) “expected-time.” However, for any hash

128 4 . SORTING AND SEARCHING

function there is a given worst-case set of keys that all get hashed to the same
bucket. But now suppose we randomly select our hash function from a large
family of good ones as the first step of our algorithm. We get the same type
of improved guarantee that we did with randomized quicksort.

• Randomized search – Randomization can also be used to drive search tech-
niques such as simulated annealing, as will be discussed in detail in Section
7.5.3 (page 254).

Stop and Think: Nuts and Bolts

Problem: The nuts and bolts problem is defined as follows. You are given a collection
of n bolts of different widths, and n corresponding nuts. You can test whether a
given nut and bolt fit together, from which you learn whether the nut is too large,
too small, or an exact match for the bolt. The differences in size between pairs of
nuts or bolts are too small to see by eye, so you cannot compare the sizes of two
nuts or two bolts directly. You are to match each bolt to each nut.

Give an O(n2) algorithm to solve the nuts and bolts problem. Then give a
randomized O(n log n) expected time algorithm for the same problem.

Solution: The brute force algorithm for matching nuts and bolts starts with the
first bolt and compares it to each nut until we find a match. In the worst case, this
will require n comparisons. Repeating this for each successive bolt on all remaining
nuts yields a quadratic-comparison algorithm.

What if we pick a random bolt and try it? On average, we would expect to
get about halfway through the set of nuts before we found the match, so this
randomized algorithm would do half the work as the worst case. That counts as
some kind of improvement, although not an asymptotic one.

Randomized quicksort achieves the desired expected-case running time, so a
natural idea is to emulate it on the nuts and bolts problem. Indeed, sorting both
the nuts and bolts by size would yield a matching, since the ith largest nut must
match the ith largest bolt.

The fundamental step in quicksort is partitioning elements around a pivot. Can
we partition nuts and bolts around a randomly selected bolt b? Certainly we can
partition the nuts into those of size less than b and greater than b. But decomposing
the problem into two halves requires partitioning the bolts as well, and we cannot
compare bolt against bolt. But once we find the matching nut to b we can use it to
partition the bolts accordingly. In 2n − 2 comparisons, we partition the nuts and
bolts, and the remaining analysis follows directly from randomized quicksort.

What is interesting about this problem is that no simple deterministic algorithm
for nut and bolt sorting is known. It illustrates how randomization makes the bad
case go away, leaving behind a simple and beautiful algorithm.

4 .7 DISTRIBUTION SORT: SORTING VIA BUCKETING 129

4.6.3 Is Quicksort Really Quick?

There is a clear, asymptotic difference between an Θ(n log n) algorithm and one
that runs in Θ(n2). Thus, only the most obstinate reader would doubt my claim
that mergesort, heapsort, and quicksort should all outperform insertion sort or
selection sort on large enough instances.

But how can we compare two Θ(n log n) algorithms to decide which is faster?
How can we prove that quicksort is really quick? Unfortunately, the RAM model
and Big Oh analysis provide too coarse a set of tools to make that type of distinc-
tion. When faced with algorithms of the same asymptotic complexity, implemen-
tation details and system quirks such as cache performance and memory size may
well prove to be the decisive factor.

4.7 Distribution Sort: Sorting via Bucketing

We could sort sorting names for the telephone book by partitioning them according
to the first letter of the last name. This will create 26 different piles, or buckets, of
names. Observe that any name in the J pile must occur after every name in the I
pile, but before any name in the K pile. Therefore, we can proceed to sort each pile
individually and just concatenate the bunch of sorted piles together at the end.

If the names are distributed evenly among the buckets, the resulting 26 sorting
problems should each be substantially smaller than the original problem. Further,
by now partitioning each pile based on the second letter of each name, we generate
smaller and smaller piles. The names will be sorted as soon as each bucket con-
tains only a single name. The resulting algorithm is commonly called bucketsort or
distribution sort.

Bucketing is a very effective idea whenever we are confident that the distribution
of data will be roughly uniform. It is the idea that underlies hash tables, kd-trees,
and a variety of other practical data structures. The downside of such techniques
is that the performance can be terrible when the data distribution is not what we
expected. Although data structures such as balanced binary trees offer guaranteed
worst-case behavior for any input distribution, no such promise exists for heuristic
data structures on unexpected input distributions.

Nonuniform distributions do occur in real life. Consider Americans with the
uncommon last name of Shifflett. When last I looked, the Manhattan telephone
directory (with over one million names) contained exactly five Shiffletts. So how
many Shiffletts should there be in a small city of 50,000 people? Figure 4.8 shows

What we can say is that experiments show that when a quicksort is implemented
well, it is typically 2-3 times faster than mergesort or heapsort. The primary reason
is that the operations in the innermost loop are simpler. But I can’t argue with
you if you don’t believe me when I say quicksort is faster. It is a question whose
solution lies outside the analytical tools we are using. The best way to tell is to
implement both algorithms and experiment.

130 4 . SORTING AND SEARCHING

Figure 4.8: A small subset of Charlottesville Shiffletts

a small portion of the two and a half pages of Shiffletts in the Charlottesville,
Virginia telephone book. The Shifflett clan is a fixture of the region, but it would
play havoc with any distribution sort program, as refining buckets from S to Sh
to Shi to Shif to . . . to Shifflett results in no significant partitioning.

Take-Home Lesson: Sorting can be used to illustrate most algorithm design
paradigms. Data structure techniques, divide-and-conquer, randomization, and
incremental construction all lead to efficient sorting algorithms.

4.7.1 Lower Bounds for Sorting

One last issue on the complexity of sorting. We have seen several sorting algorithms
that run in worst-case O(n log n) time, but none of which is linear. To sort n items
certainly requires looking at all of them, so any sorting algorithm must be Ω(n) in
the worst case. Can we close this remaining Θ(log n) gap?

The answer is no. An Ω(n log n) lower bound can be shown by observing that
any sorting algorithm must behave differently during execution on each of the dis-
tinct n! permutations of n keys. The outcome of each pairwise comparison governs
the run-time behavior of any comparison-based sorting algorithm. We can think of
the set of all possible executions of such an algorithm as a tree with n! leaves. The
minimum height tree corresponds to the fastest possible algorithm, and it happens
that lg(n!) = Θ(n log n).

This lower bound is important for several reasons. First, the idea can be ex-
tended to give lower bounds for many applications of sorting, including element
uniqueness, finding the mode, and constructing convex hulls. Sorting has one of
the few nontrivial lower bounds among algorithmic problems. We will present
an alternate approach to arguing that fast algorithms are unlikely to exist in
Chapter 9.

4 .8 WAR STORY: SKIENA FOR THE DEFENSE 131

4.8 War Story: Skiena for the Defense

I lead a quiet, reasonably honest life. One reward for this is that I don’t often find
myself on the business end of surprise calls from lawyers. Thus I was astonished to
get a call from a lawyer who not only wanted to talk with me, but wanted to talk
to me about sorting algorithms.

It turned out that her firm was working on a case involving high-performance
programs for sorting, and needed an expert witness who could explain technical
issues to the jury. From the first edition of this book, they could see I knew some-
thing about algorithms, but before taking me on they demanded to see my teaching
evaluations to prove that I could explain things to people.2 It proved to be a fasci-
nating opportunity to learn about how really fast sorting programs work. I figured
I could finally answer the question of which in-place sorting algorithm was fastest
in practice. Was it heapsort or quicksort? What subtle, secret algorithmics made
the difference to minimize the number of comparisons in practice?

The answer was quite humbling. Nobody cared about in-place sorting. The name
of the game was sorting huge files, much bigger than could fit in main memory. All
the important action was in getting the the data on and off a disk. Cute algorithms
for doing internal (in-memory) sorting were not particularly important because the
real problem lies in sorting gigabytes at a time.

Recall that disks have relatively long seek times, reflecting how long it takes the
desired part of the disk to rotate under the read/write head. Once the head is in the
right place, the data moves relatively quickly, and it costs about the same to read
a large data block as it does to read a single byte. Thus, the goal is minimizing the
number of blocks read/written, and coordinating these operations so the sorting
algorithm is never waiting to get the data it needs.

The disk-intensive nature of sorting is best revealed by the annual Minutesort
competition. The goal is to sort as much data in one minute as possible. The cur-
rent champion is Jim Wyllie of IBM Research, who managed to sort 116 gigabytes
of data in 58.7 seconds on his little old 40-node 80-Itanium cluster with a SAN
array of 2,520 disks. Slightly more down-to-earth is the Pennysort division, where
the goal is the maximized sorting performance per penny of hardware. The cur-
rent champ here (BSIS from China) sorted 32 gigabytes in 1,679 seconds on a
$760 PC containing four SATA drives. You can check out the current records at
http://research.microsoft.com/barc/SortBenchmark/.

That said, which algorithm is best for external sorting? It basically turns out
to be a multiway mergesort, employing a lot of engineering and special tricks.
You build a heap with members of the top block from each of k sorted lists. By
repeatedly plucking the top element off this heap, you build a sorted list merging
these k lists. Because this heap is sitting in main memory, these operations are
fast. When you have a large enough sorted run, you write it to disk and free up

2One of my more cynical faculty colleagues said this was the first time anyone, anywhere, had ever looked
at university teaching evaluations.

132 4 . SORTING AND SEARCHING

memory for more data. Once you start to run out of elements from the top block
of one of the k sorted lists you are merging, load the next block.

It proves very hard to benchmark sorting programs/algorithms at this level
and decide which is really fastest. Is it fair to compare a commercial program
designed to handle general files with a stripped-down code optimized for integers?
The Minutesort competition employs randomly-generated 100-byte records. This is
a different world than sorting names or integers. For example, one widely employed
trick is to strip off a relatively short prefix of the key and initially sort just on that,
to avoid lugging around all those extra bytes.

What lessons can be learned from this? The most important, by far, is to
do everything you can to avoid being involved in a lawsuit as either a plaintiff
or defendant.3 Courts are not instruments for resolving disputes quickly. Legal
battles have a lot in common with military battles: they escalate very quickly,
become very expensive in time, money, and soul, and usually end only when both
sides are exhausted and compromise. Wise are the parties who can work out their
problems without going to court. Properly absorbing this lesson now could save
you thousands of times the cost of this book.

On technical matters, it is important to worry about external memory perfor-
mance whenever you combine very large datasets with low-complexity algorithms
(say linear or n log n). Constant factors of even 5 or 10 can make a big differ-
ence then between what is feasible and what is hopeless. Of course, quadratic-time
algorithms are doomed to fail on large datasets regardless of data access times.

4.9 Binary Search and Related Algorithms

Binary search is a fast algorithm for searching in a sorted array of keys S. To search
for key q, we compare q to the middle key S[n/2]. If q appears before S[n/2], it
must reside in the top half of S; if not, it must reside in the bottom half of S. By
repeating this process recursively on the correct half, we locate the key in a total
of �lg n� comparisons—a big win over the n/2 comparisons expect using sequential
search:

int binary_search(item_type s[], item_type key, int low, int high)
{

int middle; /* index of middle element */

if (low > high) return (-1); /* key not found */

middle = (low+high)/2;

3It is actually quite interesting serving as an expert witness.

4 .9 BINARY SEARCH AND RELATED ALGORITHMS 133

if (s[middle] == key) return(middle);

if (s[middle] > key)
return(binary_search(s,key,low,middle-1));

else
return(binary_search(s,key,middle+1,high));

}

This much you probably know. What is important is to have a sense of just
how fast binary search is. Twenty questions is a popular children’s game where
one player selects a word and the other repeatedly asks true/false questions in an
attempt to guess it. If the word remains unidentified after 20 questions, the first
party wins; otherwise, the second player takes the honors. In fact, the second player
always has a winning strategy, based on binary search. Given a printed dictionary,
the player opens it in the middle, selects a word (say “move”), and asks whether the
unknown word is before “move” in alphabetical order. Since standard dictionaries
contain 50,000 to 200,000 words, we can be certain that the process will terminate
within twenty questions.

4.9.1 Counting Occurrences

Several interesting algorithms follow from simple variants of binary search. Suppose
that we want to count the number of times a given key k (say “Skiena”) occurs in
a given sorted array. Because sorting groups all the copies of k into a contiguous
block, the problem reduces to finding the right block and then measures its size.

The binary search routine presented above enables us to find the index of an
element of the correct block (x) in O(lg n) time. The natural way to identify the
boundaries of the block is to sequentially test elements to the left of x until we
find the first one that differs from the search key, and then repeat this search to
the right of x. The difference between the indices of the left and right boundaries
(plus one) gives the count of the number of occurrences of k.

This algorithm runs in O(lg n + s), where s is the number of occurrences of the
key. This can be as bad as linear if the entire array consists of identical keys. A
faster algorithm results by modifying binary search to search for the boundary of
the block containing k, instead of k itself. Suppose we delete the equality test

if (s[middle] == key) return(middle);

from the implementation above and return the index low instead of −1 on each
unsuccessful search. All searches will now be unsuccessful, since there is no equality
test. The search will proceed to the right half whenever the key is compared to an
identical array element, eventually terminating at the right boundary. Repeating
the search after reversing the direction of the binary comparison will lead us to the
left boundary. Each search takes O(lg n) time, so we can count the occurrences in
logarithmic time regardless of the size of the block.

134 4 . SORTING AND SEARCHING

4.9.2 One-Sided Binary Search

Now suppose we have an array A consisting of a run of 0’s, followed by an un-
bounded run of 1’s, and would like to identify the exact point of transition between
them. Binary search on the array would provide the transition point in �lg n� tests,
if we had a bound n on the number of elements in the array. In the absence of such
a bound, we can test repeatedly at larger intervals (A[1], A[2], A[4], A[8], A[16],
. . .) until we find a first nonzero value. Now we have a window containing the
target and can proceed with binary search. This one-sided binary search finds the
transition point p using at most 2�lg p� comparisons, regardless of how large the
array actually is. One-sided binary search is most useful whenever we are looking
for a key that lies close to our current position.

4.9.3 Square and Other Roots

The square root of n is the number r such that r2 = n. Square root computations
are performed inside every pocket calculator, but it is instructive to develop an
efficient algorithm to compute them.

First, observe that the square root of n ≥ 1 must be at least 1 and at most
n. Let l = 1 and r = n. Consider the midpoint of this interval, m = (l + r)/2.
How does m2 compare to n? If n ≥ m2, then the square root must be greater than
m, so the algorithm repeats with l = m. If n < m2, then the square root must
be less than m, so the algorithm repeats with r = m. Either way, we have halved
the interval using only one comparison. Therefore, after lg n rounds we will have
identified the square root to within ±1.

This bisection method, as it is called in numerical analysis, can also be applied
to the more general problem of finding the roots of an equation. We say that x is
a root of the function f if f(x) = 0. Suppose that we start with values l and r such
that f(l) > 0 and f(r) < 0. If f is a continuous function, there must exist a root
between l and r. Depending upon the sign of f(m), where m = (l + r)/2, we can
cut this window containing the root in half with each test and stop soon as our
estimate becomes sufficiently accurate.

Root-finding algorithms that converge faster than binary search are known for
both of these problems. Instead of always testing the midpoint of the interval,
these algorithms interpolate to find a test point closer to the actual root. Still,
binary search is simple, robust, and works as well as possible without additional
information on the nature of the function to be computed.

Take-Home Lesson: Binary search and its variants are the quintessential
divide-and-conquer algorithms.

4 .10 DIVIDE-AND-CONQUER 135

4.10 Divide-and-Conquer

One of the most powerful techniques for solving problems is to break them down
into smaller, more easily solved pieces. Smaller problems are less overwhelming, and
they permit us to focus on details that are lost when we are studying the entire
problem. A recursive algorithm starts to become apparent when we can break
the problem into smaller instances of the same type of problem. Effective parallel
processing requires decomposing jobs into at least as many tasks as processors, and
is becoming more important with the advent of cluster computing and multicore
processors.

Two important algorithm design paradigms are based on breaking problems
down into smaller problems. In Chapter 8, we will see dynamic programming,
which typically removes one element from the problem, solves the smaller problem,
and then uses the solution to this smaller problem to add back the element in the
proper way. Divide-and-conquer instead splits the problem in (say) halves, solves
each half, then stitches the pieces back together to form a full solution.

To use divide-and-conquer as an algorithm design technique, we must divide
the problem into two smaller subproblems, solve each of them recursively, and then
meld the two partial solutions into one solution to the full problem. Whenever
the merging takes less time than solving the two subproblems, we get an efficient
algorithm. Mergesort, discussed in Section 4.5 (page 120), is the classic example of
a divide-and-conquer algorithm. It takes only linear time to merge two sorted lists
of n/2 elements, each of which was obtained in O(n lg n) time.

Divide-and-conquer is a design technique with many important algorithms to
its credit, including mergesort, the fast Fourier transform, and Strassen’s matrix
multiplication algorithm. Beyond binary search and its many variants, however, I
find it to be a difficult design technique to apply in practice. Our ability to analyze
divide-and-conquer algorithms rests on our strength to solve the asymptotics of
recurrence relations governing the cost of such recursive algorithms.

4.10.1 Recurrence Relations

Many divide-and-conquer algorithms have time complexities that are naturally
modeled by recurrence relations. Evaluating such recurrences is important to un-
derstanding when divide-and-conquer algorithms perform well, and provide an im-
portant tool for analysis in general. The reader who balks at the very idea of
analysis is free to skip this section, but there are important insights into design
that come from an understanding of the behavior of recurrence relations.

What is a recurrence relation? It is an equation that is defined in terms of itself.
The Fibonacci numbers are described by the recurrence relation Fn = Fn−1 +Fn−2

and discussed in Section 8.1.1. Many other natural functions are easily expressed
as recurrences. Any polynomial can be represented by a recurrence, such as the
linear function:

an = an−1 + 1, a1 = 1 −→ an = n

136 4 . SORTING AND SEARCHING

Any exponential can be represented by a recurrence:

an = 2an−1, a1 = 1 −→ an = 2n−1

Finally, lots of weird functions that cannot be described easily with conventional
notation can be represented by a recurrence:

an = nan−1, a1 = 1 −→ an = n!

This means that recurrence relations are a very versatile way to represent functions.
The self-reference property of recurrence relations is shared with recursive pro-

grams or algorithms, as the shared roots of both terms reflect. Essentially, recur-
rence relations provide a way to analyze recursive structures, such as algorithms.

4.10.2 Divide-and-Conquer Recurrences

Divide-and-conquer algorithms tend to break a given problem into some number of
smaller pieces (say a), each of which is of size n/b. Further, they spend f(n) time
to combine these subproblem solutions into a complete result. Let T (n) denote the
worst-case time the algorithm takes to solve a problem of size n. Then T (n) is
given by the following recurrence relation:

T (n) = aT (n/b) + f(n)

Consider the following examples:

• Sorting – The running time behavior of mergesort is governed by the re-
currence T (n) = 2T (n/2) + O(n), since the algorithm divides the data into
equal-sized halves and then spends linear time merging the halves after they
are sorted. In fact, this recurrence evaluates to T (n) = O(n lg n), just as we
got by our previous analysis.

• Binary Search – The running time behavior of binary search is governed by
the recurrence T (n) = T (n/2) + O(1), since at each step we spend constant
time to reduce the problem to an instance half its size. In fact, this recurrence
evaluates to T (n) = O(lg n), just as we got by our previous analysis.

• Fast Heap Construction – The bubble down method of heap construction
(described in Section 4.3.4) built an n-element heap by constructing two n/2
element heaps and then merging them with the root in logarithmic time. This
argument reduces to the recurrence relation T (n) = 2T (n/2) + O(lg n). In
fact, this recurrence evaluates to T (n) = O(n), just as we got by our previous
analysis.

• Matrix Multiplication – As discussed in Section 2.5.4, the standard matrix
multiplication algorithm for two n × n matrices takes O(n3), because we
compute the dot product of n terms for each of the n2 elements in the product
matrix.

4 .10 DIVIDE-AND-CONQUER 137

However, Strassen [Str69] discovered a divide-and-conquer algorithm that
manipulates the products of seven n/2 × n/2 matrix products to yield the
product of two n × n matrices. This yields a time-complexity recurrence
T (n) = 7T (n/2) + O(n2). In fact, this recurrence evaluates to T (n) =
O(n2.81), which seems impossible to predict without solving the recurrence.

4.10.3 Solving Divide-and-Conquer Recurrences (*)

In fact, divide-and-conquer recurrences of the form T (n) = aT (n/b) + f(n) are
generally easy to solve, because the solutions typically fall into one of three distinct
cases:

1. If f(n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a).

2. If f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a lg n).

3. If f(n) = Ω(nlogb a+ε) for some constant ε > 0, and if af(n/b) ≤ cf(n) for
some c < 1, then T (n) = Θ(f(n)).

Although this looks somewhat frightening, it really isn’t difficult to apply. The
issue is identifying which case of the so-called master theorem holds for your given
recurrence. Case 1 holds for heap construction and matrix multiplication, while
Case 2 holds mergesort and binary search. Case 3 generally arises for clumsier
algorithms, where the cost of combining the subproblems dominates everything.

The master theorem can be thought of as a black-box piece of machinery, in-
voked as needed and left with its mystery intact. However, with a little study, the
reason why the master theorem works can become apparent.

Figure 4.9 shows the recursion tree associated with a typical T (n) = aT (n/b)+
f(n) divide-and-conquer algorithm. Each problem of size n is decomposed into a
problems of size n/b. Each subproblem of size k takes O(f(k)) time to deal with
internally, between partitioning and merging. The total time for the algorithm is
the sum of these internal costs, plus the overhead of building the recursion tree.
The height of this tree is h = logb n and the number of leaf nodes ah = alogb n,
which happens to simplify to nlogb a with some algebraic manipulation.

The three cases of the master theorem correspond to three different costs which
might be dominant as a function of a, b, and f(n):

• Case 1: Too many leaves – If the number of leaf nodes outweighs the sum of
the internal evaluation cost, the total running time is O(nlogb a).

• Case 2: Equal work per level – As we move down the tree, each problem
gets smaller but there are more of them to solve. If the sum of the internal
evaluation costs at each level are equal, the total running time is the cost per
level (nlogb a) times the number of levels (logb n), for a total running time of
O(nlogb a lg n).

138 4 . SORTING AND SEARCHING

height = log n
b

partition size = 1

partition size = b

2

n

n/b

n/b

partition size =

partition size =

partition size =

vertex degree = a

Figure 4.9: The recursion tree resulting from decomposing each problem of size n into a
problems of size n/b

• Case 3: Too expensive a root – If the internal evaluation costs grow rapidly
enough with n, then the cost of the root evaluation may dominate. If so, the
the total running time is O(f(n)).

Chapter Notes

The most interesting sorting algorithms that have not been discussed in this section
include shellsort, which is a substantially more efficient version of insertion sort,
and radix sort, an efficient algorithm for sorting strings. You can learn more about
these and every other sorting algorithm by browsing through Knuth [Knu98], with
hundreds of pages of interesting material on sorting. This includes external sorting,
the subject of this chapter’s legal war story.

As implemented here, mergesort copies the merged elements into an auxiliary
buffer to avoid overwriting the original elements to be sorted. Through clever but
complicated buffer manipulation, mergesort can be implemented in an array with-
out using much extra storage. Kronrod’s algorithm for in-place merging is presented
in [Knu98].

Randomized algorithms are discussed in greater detail in the books by Mot-
wani and Raghavan [MR95] and Mitzenmacher and Upfal [MU05]. The problem of

b
log n

b
log a

n=width = a

4 .11 EXERCISES 139

nut and bolt sorting was introduced by [Raw92]. A complicated but deterministic
O(n log n) algorithm is due to Komlos, Ma, and Szemeredi [KMS96].

Several other algorithms texts provide more substantive coverage of divide-
and-conquer algorithms, including [CLRS01, KT06, Man89]. See [CLRS01] for an
excellent overview of the master theorem.

4.11 Exercises

Applications of Sorting

4-1. [3] The Grinch is given the job of partitioning 2n players into two teams of n
players each. Each player has a numerical rating that measures how good he/she is
at the game. He seeks to divide the players as unfairly as possible, so as to create
the biggest possible talent imbalance between team A and team B. Show how the
Grinch can do the job in O(n log n) time.

4-2. [3] For each of the following problems, give an algorithm that finds the desired
numbers within the given amount of time. To keep your answers brief, feel free to
use algorithms from the book as subroutines. For the example, S = {6, 13, 19, 3, 8},
19 − 3 maximizes the difference, while 8 − 6 minimizes the difference.

(a) Let S be an unsorted array of n integers. Give an algorithm that finds the pair
x, y ∈ S that maximizes |x− y|. Your algorithm must run in O(n) worst-case time.

(b) Let S be a sorted array of n integers. Give an algorithm that finds the pair
x, y ∈ S that maximizes |x− y|. Your algorithm must run in O(1) worst-case time.

(c) Let S be an unsorted array of n integers. Give an algorithm that finds the pair
x, y ∈ S that minimizes |x − y|, for x �= y. Your algorithm must run in O(n log n)
worst-case time.

(d) Let S be a sorted array of n integers. Give an algorithm that finds the pair
x, y ∈ S that minimizes |x − y|, for x �= y. Your algorithm must run in O(n)
worst-case time.

4-3. [3] Take a sequence of 2n real numbers as input. Design an O(n log n) algorithm that
partitions the numbers into n pairs, with the property that the partition minimizes
the maximum sum of a pair. For example, say we are given the numbers (1,3,5,9).
The possible partitions are ((1,3),(5,9)), ((1,5),(3,9)), and ((1,9),(3,5)). The pair
sums for these partitions are (4,14), (6,12), and (10,8). Thus the third partition has
10 as its maximum sum, which is the minimum over the three partitions.

4-4. [3] Assume that we are given n pairs of items as input, where the first item is a
number and the second item is one of three colors (red, blue, or yellow). Further
assume that the items are sorted by number. Give an O(n) algorithm to sort the
items by color (all reds before all blues before all yellows) such that the numbers
for identical colors stay sorted.

For example: (1,blue), (3,red), (4,blue), (6,yellow), (9,red) should become (3,red),
(9,red), (1,blue), (4,blue), (6,yellow).

4-5. [3] The mode of a set of numbers is the number that occurs most frequently in the
set. The set (4, 6, 2, 4, 3, 1) has a mode of 4. Give an efficient and correct algorithm
to compute the mode of a set of n numbers.

140 4 . SORTING AND SEARCHING

4-6. [3] Given two sets S1 and S2 (each of size n), and a number x, describe an O(n log n)
algorithm for finding whether there exists a pair of elements, one from S1 and one
from S2, that add up to x. (For partial credit, give a Θ(n2) algorithm for this
problem.)

4-7. [3] Outline a reasonable method of solving each of the following problems. Give
the order of the worst-case complexity of your methods.

(a) You are given a pile of thousands of telephone bills and thousands of checks
sent in to pay the bills. Find out who did not pay.

(b) You are given a list containing the title, author, call number and publisher of
all the books in a school library and another list of 30 publishers. Find out
how many of the books in the library were published by each company.

(c) You are given all the book checkout cards used in the campus library during
the past year, each of which contains the name of the person who took out
the book. Determine how many distinct people checked out at least one book.

4-8. [4] Given a set of S containing n real numbers, and a real number x. We seek an
algorithm to determine whether two elements of S exist whose sum is exactly x.

(a) Assume that S is unsorted. Give an O(n log n) algorithm for the problem.

(b) Assume that S is sorted. Give an O(n) algorithm for the problem.

4-9. [4] Give an efficient algorithm to compute the union of sets A and B, where
n = max(|A|, |B|). The output should be an array of distinct elements that form

(a) Assume that A and B are unsorted. Give an O(n log n) algorithm for the
problem.

(b) Assume that A and B are sorted. Give an O(n) algorithm for the problem.

4-10. [5] Given a set S of n integers and an integer T , give an O(nk−1 log n) algorithm
to test whether k of the integers in S add up to T .

4-11. [6] Design an O(n) algorithm that, given a list of n elements, finds all the elements
that appear more than n/2 times in the list. Then, design an O(n) algorithm that,
given a list of n elements, finds all the elements that appear more than n/4 times.

Heaps

4-12. [3] Devise an algorithm for finding the k smallest elements of an unsorted set of n
integers in O(n + k log n).

4-13. [5] You wish to store a set of n numbers in either a max-heap or a sorted array.
For each application below, state which data structure is better, or if it does not
matter. Explain your answers.

(a) Want to find the maximum element quickly.

(b) Want to be able to delete an element quickly.

(c) Want to be able to form the structure quickly.

(d) Want to find the minimum element quickly.

the union of the sets, such that they appear exactly once in the union.

4 .11 EXERCISES 141

4-14. [5] Give an O(n log k)-time algorithm that merges k sorted lists with a total of n
elements into one sorted list. (Hint: use a heap to speed up the elementary O(kn)-
time algorithm).

4-15. [5] (a) Give an efficient algorithm to find the second-largest key among n keys.
You can do better than 2n − 3 comparisons.

(b) Then, give an efficient algorithm to find the third-largest key among n keys.
How many key comparisons does your algorithm do in the worst case? Must your
algorithm determine which key is largest and second-largest in the process?

Quicksort

4-16. [3] Use the partitioning idea of quicksort to give an algorithm that finds the median
element of an array of n integers in expected O(n) time. (Hint: must you look at
both sides of the partition?)

4-17. [3] The median of a set of n values is the �n/2
th smallest value.

(a) Suppose quicksort always pivoted on the median of the current sub-array. How
many comparisons would Quicksort make then in the worst case?

(b) Suppose quicksort were always to pivot on the �n/3
th smallest value of the
current sub-array. How many comparisons would be made then in the worst
case?

4-18. [5] Suppose an array A consists of n elements, each of which is red, white, or blue.
We seek to sort the elements so that all the reds come before all the whites, which
come before all the blues The only operation permitted on the keys are

• Examine(A,i) – report the color of the ith element of A.

• Swap(A,i,j) – swap the ith element of A with the jth element.

Find a correct and efficient algorithm for red-white-blue sorting. There is a linear-
time solution.

4-19. [5] An inversion of a permutation is a pair of elements that are out of order.

(a) Show that a permutation of n items has at most n(n−1)/2 inversions. Which
permutation(s) have exactly n(n − 1)/2 inversions?

(b) Let P be a permutation and P r be the reversal of this permutation. Show
that P and P r have a total of exactly n(n − 1)/2 inversions.

(c) Use the previous result to argue that the expected number of inversions in a
random permutation is n(n − 1)/4.

4-20. [3] Give an efficient algorithm to rearrange an array of n keys so that all the
negative keys precede all the nonnegative keys. Your algorithm must be in-place,
meaning you cannot allocate another array to temporarily hold the items. How fast
is your algorithm?

Other Sorting Algorithms

4-21. [5] Stable sorting algorithms leave equal-key items in the same relative order as in
the original permutation. Explain what must be done to ensure that mergesort is
a stable sorting algorithm.

142 4 . SORTING AND SEARCHING

4-22. [3] Show that n positive integers in the range 1 to k can be sorted in O(n log k)
time. The interesting case is when k << n.

4-23. [5] We seek to sort a sequence S of n integers with many duplications, such that
the number of distinct integers in S is O(log n). Give an O(n log log n) worst-case
time algorithm to sort such sequences.

4-24. [5] Let A[1..n] be an array such that the first n −√
n elements are already sorted

(though we know nothing about the remaining elements). Give an algorithm that
sorts A in substantially better than n log n steps.

4-25. [5] Assume that the array A[1..n] only has numbers from {1, . . . , n2} but that at
most log log n of these numbers ever appear. Devise an algorithm that sorts A in
substantially less than O(n log n).

4-26. [5] Consider the problem of sorting a sequence of n 0’s and 1’s using comparisons.
For each comparison of two values x and y, the algorithm learns which of x < y,
x = y, or x > y holds.

(a) Give an algorithm to sort in n − 1 comparisons in the worst case. Show that
your algorithm is optimal.

(b) Give an algorithm to sort in 2n/3 comparisons in the average case (assuming
each of the n inputs is 0 or 1 with equal probability). Show that your algorithm
is optimal.

4-27. [6] Let P be a simple, but not necessarily convex, polygon and q an arbitrary
point not necessarily in P . Design an efficient algorithm to find a line segment
originating from q that intersects the maximum number of edges of P . In other
words, if standing at point q, in what direction should you aim a gun so the bullet
will go through the largest number of walls. A bullet through a vertex of P gets
credit for only one wall. An O(n log n) algorithm is possible.

Lower Bounds

4-28. [5] In one of my research papers [Ski88], I discovered a comparison-based sorting
algorithm that runs in O(n log(

√
n)). Given the existence of an Ω(n log n) lower

bound for sorting, how can this be possible?

4-29. [5] Mr. B. C. Dull claims to have developed a new data structure for priority queues
that supports the operations Insert, Maximum, and Extract-Max—all in O(1) worst-
case time. Prove that he is mistaken. (Hint: the argument does not involve a lot of
gory details—just think about what this would imply about the Ω(n log n) lower
bound for sorting.)

Searching

4-30. [3] A company database consists of 10,000 sorted names, 40% of whom are known as
good customers and who together account for 60% of the accesses to the database.
There are two data structure options to consider for representing the database:

• Put all the names in a single array and use binary search.

• Put the good customers in one array and the rest of them in a second array.
Only if we do not find the query name on a binary search of the first array do
we do a binary search of the second array.

4 .11 EXERCISES 143

Demonstrate which option gives better expected performance. Does this change
if linear search on an unsorted array is used instead of binary search for both
options?

4-31. [3] Suppose you are given an array A of n sorted numbers that has been circularly
shifted k positions to the right. For example, {35, 42, 5, 15, 27, 29} is a sorted array
that has been circularly shifted k = 2 positions, while {27, 29, 35, 42, 5, 15} has been
shifted k = 4 positions.

• Suppose you know what k is. Give an O(1) algorithm to find the largest
number in A.

• Suppose you do not know what k is. Give an O(lg n) algorithm to find the
largest number in A. For partial credit, you may give an O(n) algorithm.

4-32. [3] Consider the numerical 20 Questions game. In this game, Player 1 thinks of a
number in the range 1 to n. Player 2 has to figure out this number by asking the
fewest number of true/false questions. Assume that nobody cheats.

(a) What is an optimal strategy if n in known?

(b) What is a good strategy is n is not known?

4-33. [5] Suppose that you are given a sorted sequence of distinct integers {a1, a2, . . . , an}.
Give an O(lg n) algorithm to determine whether there exists an i index such as
ai = i. For example, in {−10,−3, 3, 5, 7}, a3 = 3. In {2, 3, 4, 5, 6, 7}, there is no
such i.

4-34. [5] Suppose that you are given a sorted sequence of distinct integers {a1, a2, . . . , an},
drawn from 1 to m where n < m. Give an O(lg n) algorithm to find an integer ≤ m
that is not present in a. For full credit, find the smallest such integer.

4-35. [5] Let M be an n×m integer matrix in which the entries of each row are sorted in
increasing order (from left to right) and the entries in each column are in increasing
order (from top to bottom). Give an efficient algorithm to find the position of an
integer x in M , or to determine that x is not there. How many comparisons of x
with matrix entries does your algorithm use in worst case?

Implementation Challenges

4-36. [5] Consider an n× n array A containing integer elements (positive, negative, and
zero). Assume that the elements in each row of A are in strictly increasing order,
and the elements of each column of A are in strictly decreasing order. (Hence there
cannot be two zeroes in the same row or the same column.) Describe an efficient
algorithm that counts the number of occurrences of the element 0 in A. Analyze its
running time.

4-37. [6] Implement versions of several different sorting algorithms, such as selection sort,
insertion sort, heapsort, mergesort, and quicksort. Conduct experiments to assess
the relative performance of these algorithms in a simple application that reads a
large text file and reports exactly one instance of each word that appears within it.
This application can be efficiently implemented by sorting all the words that occur
in the text and then passing through the sorted sequence to identify one instance
of each distinct word. Write a brief report with your conclusions.

144 4 . SORTING AND SEARCHING

4-38. [5] Implement an external sort, which uses intermediate files to sort files bigger
than main memory. Mergesort is a good algorithm to base such an implementation
on. Test your program both on files with small records and on files with large
records.

4-39. [8] Design and implement a parallel sorting algorithm that distributes data across
several processors. An appropriate variation of mergesort is a likely candidate. Mea-
sure the speedup of this algorithm as the number of processors increases. Later,
compare the execution time to that of a purely sequential mergesort implementa-
tion. What are your experiences?

Interview Problems

4-40. [3] If you are given a million integers to sort, what algorithm would you use to sort
them? How much time and memory would that consume?

4-41. [3] Describe advantages and disadvantages of the most popular sorting algorithms.

4-42. [3] Implement an algorithm that takes an input array and returns only the unique
elements in it.

4-43. [5] You have a computer with only 2Mb of main memory. How do you use it to sort
a large file of 500 Mb that is on disk?

4-44. [5] Design a stack that supports push, pop, and retrieving the minimum element
in constant time. Can you do this?

4-46. [6] You are given 12 coins. One of them is heavier or lighter than the rest. Identify
this coin in just three weighings.

Programming Challenges

These programming challenge problems with robot judging are available at
http://www.programming-challenges.com or http://online-judge.uva.es.

4-1. “Vito’s Family” – Programming Challenges 110401, UVA Judge 10041.

4-2. “Stacks of Flapjacks” – Programming Challenges 110402, UVA Judge 120.

4-3. “Bridge” – Programming Challenges 110403, UVA Judge 10037.

4-4. “ShoeMaker’s Problem” – Programming Challenges 110405, UVA Judge 10026.

4-5. “ShellSort” – Programming Challenges 110407, UVA Judge 10152.

4-45. [5] Given a search string of three words, find the smallest snippet of the document
that contains all three of the search words—i.e., the snippet with smallest number
of words in it. You are given the index positions where these words occur in the
document, such as word1: (1, 4, 5), word2: (3, 9, 10), and word3: (2, 6, 15). Each
of the lists are in sorted order, as above.

	4 Sorting and Searching

	4.1 Applications of Sorting

	4.2 Pragmatics of Sorting

	4.3 Heapsort: Fast Sorting via Data Structures

	4.3.1 Heaps
	4.3.2 Constructing Heaps
	4.3.3 Extracting the Minimum
	4.3.4 Faster Heap Construction (*)
	4.3.5 Sorting by Incremental Insertion

	4.4 War Story: Give me a Ticket on an Airplane

	4.5 Mergesort: Sorting by Divide-and-Conquer

	4.6 Quicksort: Sorting by Randomization

	4.6.1 Intuition: The Expected Case for Quicksort
	4.6.2 Randomized Algorithms
	4.6.3 Is Quicksort Really Quick?

	4.7 Distribution Sort: Sorting via Bucketing

	4.7.1 Lower Bounds for Sorting

	4.8 War Story: Skiena for the Defense

	4.9 Binary Search and Related Algorithms

	4.9.1 Counting Occurrences
	4.9.2 One-Sided Binary Search
	4.9.3 Square and Other Roots

	4.10 Divide-and-Conquer

	4.10.1 Recurrence Relations
	4.10.2 Divide-and-Conquer Recurrences
	4.10.3 Solving Divide-and-Conquer Recurrences (*)

	4.11 Exercises

