YOUR NAME PLEASE:

NETID:

Computer Science 200b
Practice Final Exam
April 2016

Enter your netid at the bottom of each page - NOW.

Closed book and closed notes, EXCEPT for one 8.5 x 11 page of notes, which you must hand in with
your exam. No electronic devices. Show ALL work you want graded on the test itself. You may not
hand in a Blue Book.

For problems that do not ask you to justify the answer, an answer alone is sufficient. However, if the
answer is wrong and no derivation or supporting reasoning is given, there will be no partial credit.

GOOD LUCK!

Problem | Points | Actual
1 10
2 10
3 10
4 10
5 10
6 10
Total 60

Page 1. NETID:

1. (10 points)

Write a plausible value of ONLY 5 of the following underlined R expressions. No errors occur.

> seg(from=1.0, to=2.0, length.out=5)

> c(1:5,5:1,1,5)

> 1st <= 10:20
> 1lstlc(2,4,6)]

> as.list(1st[3:41)

> sapplyv(lst, length)

> do.call (paste, c(as.list(lst), sep=""))

> choose (5, 3)

> runif (1)

Page 2. NETID:

2. (10 points)
Write the values of ONLY 5 of the following underlined Python expressions. No errors occur.

items = [0,1,2,3,4,5,6]
print (items[slice(2,4)1)

def x (i) :
y = set ()
for item in i:
if item not in y:
yield item
y.add (item)

print(list(x([1,5,2,1,9,1,101)))

print ("\''.jJoin(['a','b','"c'"1))

print (round (2015,-1))

a=1,2,3
print (a)

x = 10
f lambda y: x + vy
x = 20
g lambda y: x + y
print (£(10), g(10))

Page 3. NETID:

3. (10 points)
Write an R function that replicates the behavior of the following Python function.

input parameter list is a list of strings
def process(list):
for word in list:
if (word.lower () == word[::-1].lower()):
print (word)

Page 4. NETID:

4. (10 points)

Write a Python procedure solve(str), given a string, e.g., “axm”,
converts it to a number in any base such that that number is the
smallest possible. Each digit must be unique, e.g., a and x could not
both be 1. You cannot have a leading O.

>>> solve('cats')

(75 ¢+ (1 0 2 3) base 4)
> solve('zig')
(11 : (1 0 2) base 3)

> solve ('11001001")

(201 (L1 00100 1) base 2)
> solve ('22002002")

(201 (1 1 O 01 00 1) base 2)
> solve('765")

(11 : (1 0 2) base 3)

> solve ('aab')

(12 : (1 1 0 0) base 2)

Page 5. NETID:

5. (10 points) Define a python procedure btop() that generates the following bytecode

>>> dis.dis (btop)

6 0 LOAD CONST 1 (10)
3 STORE FAST 0 (i)
7 6 LOAD CONST 2 (20)
9 STORE_ FAST 1 (3)
8 12 LOAD_ FAST 0 (i)
15 LOAD FAST 1 (3)
18 BINARY MULTIPLY
19 STORE FAST 2 (k)
9 22 LOAD FAST 0 (i)
25 LOAD FAST 1 (3)
28 BINARY ADD
29 LOAD FAST 2 (k)

32 BINARY ADD
33 RETURN VALUE

Page 6. NETID:

6. (10 points)

Provide the bytecode generated for the following Python function. Use dis.dis() format, but
without the source code line numbers from the first column. We have provided the array of
comparison operators for reference.

def ptob():
a= 1
b= 2
if (@ > b):
return a
else:
return b

COMPARE_OPERATORS_SYMBOLS = |
‘<<= == =S >=" 0! not in', s, fis not!, 'sublclass']

Page 7. NETID:

7. (10 points) Write the UNIX command(s) corresponding to XXXX in the transcript
below. You may not use echo.

bash-4.2$ pwd
/home/accts/sbs5/python/final
bash-4.2$ 1s
bash-4.2$ XXXX
bash-4.2$ 1s -1
total 4
-rw-rw-r-—- 1 sbs5 sbs5 144 Apr 22 09:25 pierson
bash-4.2$ cat pierson
total 8
drwxrwxr-x 2 sbs5 sbsb5 4096 Apr 22 09:25
drwxrwxr-x 5 sbsb sbs5 4096 Apr 22 09:25
-rw-rw-r-- 1 sbs5 sbsb 0 Apr 22 09:25 pierson
bash-4.2$ XXXX
bash-4.2$ 1s -1
total 8
-rw-rw-r—-- 1 sbs5 sbs5 144 Apr 22 09:26 davenport
-rw-rw-r-—- 1 sbs5 sbs5 144 Apr 22 09:25 pierson
bash-4.2$ diff pierson davenport
bash-4.2$ XXXX

4 29 144 pierson
bash-4.2% id
uid=37645 (sbsb5) gid=26038 (sbsb)
groups=26038(sbs5),11760 (cs458),31955 (zookeep),49258 (cs4\
58ta), 63505 (cs201ta), 63533 (cs200ta)
bash-4.2$ XXXX
bash-4.2$ 1s -1

total 8
-rw-rw-r—-- 1 sbs5 sbs5 144 Apr 22 09:26 davenport
—rw——————-— 1 sbsb5 sbs5 144 Apr 22 09:25 pierson

bash-4.2$ date

Fri Apr 22 09:28:42 EDT 2016
bash-4.2$ XXXX

bash-4.2$ echo S$NOW

Fri Apr 22 09:28:44 EDT 2016
bash-4.2$ XXXX
/usr/bin/which

Page 8. NETID:

8. (10 points) Python exceptions

Write a Python function f(a,b) which exhibits the following behavior.

>>> x = f£(1,2)
result is 0.5
done

>>> x

0.5

>>> x = f£(1,0)
division by zero!
done

>>> x

Page 9. NETID:

9. (10 points) Python decorators

Define the decorator href() that has the following behavior.
@href

def link (url):
print (str(url), end="")

>>> link ('http://cnn.com')
link
>>>

Page 10. NETID:

10. (10 points)

Regular expressions. Fill in the following grid, marking an X in each square in which a pattern
matches the indexed string. Example: the column for the first string, ‘aaa’, is filled in.

Regular expressions. Fill in the following grid, marking an X in each square in which a pattern
matches the indexed string. Example: the column for the first string, 'aaa’, is filled in.

Patterns

[

10

'aaa'

LS

X | X | X

"NV

'“laeiou] *'

'“[~aeioul+'

"\wi\w\w'

'/\\d_l_$'

~0=T7]+8!

'“[0-9A-Fa-f]+S"

[a-z]$"

'/\\S_I_l

'/\\d\s?'

Page 11. NETID:

Strings:
1

© 00 N o o A~ W DN

-
o

'aaa'

'333"
'4444°
'789"
'123---45¢6"

'ABC'

|l 1

'abcdef!

11. (10 points)

Run a simulation in which you generate two random samples: one from a
uniform distribution and one from a normal distribution. There are

four possible outcomes:
@ TIf the uniform sample is less than .5 and the normal sample is

negative: return 1.

@ TIf the uniform sample is less than .5 and the normal sample is
positive: return 2.

¢ TIf the uniform sample is greater than or equal to .5 and the
normal sample is negative: return 3.

¢ TIf the uniform sample is greater than or equal to .5 and the

normal sample is positive: return 4.

> s() ## uniform sample, normal sample, value
[1] 0.5803783 0.1729185 4.0000000

> s()

[1] 0.8529958 -1.2997085 3.0000000

> s()

[1] 0.6895439 -0.3631031 3.0000000

> s()

[1] 0.0837248 -0.9171370 1.0000000

> s()

[1] 0.2787119 0.6397318 2.0000000

Page 12. NETID:

Other questions
e Python list comprehension

® Tdempotence
® Python object oriented programming

Page 13. NETID:

