
YOUR NAME PLEASE:

NETID:

Computer Science 200b
Exam 2 - Practice

April 2016

Enter your netid at the bottom of each page.

Closed book and closed notes. No electronic devices. Show ALL work you want graded on the test itself.

You may not hand in a Blue Book.

For problems that do not ask you to justify the answer, an answer alone is sufficient. However, if the

answer is wrong and no derivation or supporting reasoning is given, there will be no partial credit.

GOOD LUCK!

Problem Points Actual
1 10
2 10
3 10
4 10
5 10
6 10

Total 60

Page 1. NETID:

1.(a) (10 points)

Short answer.

What is a decorator? What purpose do decorators serve in Python?

A decorator is a wrapper function that surrounds a function, optionally executing code
before and after the function executes. It can be used for debugging, tracking,
memoization, and other nifty purposes. It relies on the fact that functions can be passed
as arguments in Python.

What is an exception? What purpose do exceptions serve in Python? Explain the related
meaning of EAFP vs LBYL.

An exception is a runtime error that interrupts normal control flow. They are not
unconditionally fatal It is possible to catch an exception and deal with it
programmatically. The idea is that certain errors are predictable, e.g., division by zero,
array out of bounds, missing file or permission errors. Exceptions embody the EAFP
philosophy (easier to ask forgiveness than permission) as opposed to the LBYL
approach (look before you leap). See “import this” for more Python philosophy.

How does object oriented programming improve software reliability?

● Code reuse

● Encapsulation

● Structure

● Maintenance

● Consistency

● Polymorphism

See http://zoo.cs.yale.edu/classes/cs200/lectures/oop.html

Page 2. NETID:

http://zoo.cs.yale.edu/classes/cs200/lectures/oop.html

2. (10 points)

Below we define several functions, which may or may not raise an exception when executed.
For each function, indicate if an exception is raised always, sometimes, or never. For always
and sometimes, indicate what exception is raised and for sometimes specify the conditions
under which the exception occurs.

def f1():
 return 1/0

Always
ZeroDivisionError: division by zero

def f2():
 return a

Sometimes - if a is not defined
NameError: name 'a' is not defined

def f3():
 a = [1, 2]
 return a[2]

Always
IndexError: list index out of range

def f4():
 a = [1, 2, 3, 4]
 return a[2]

Never

Page 3. NETID:

3. (10 points) Define a python procedure x() that generates the following bytecode

>>> dis.dis(x)
 6 0 LOAD_CONST 1 (2)

 3 STORE_FAST 0 (a)

 7 6 LOAD_CONST 2 (3)

 9 STORE_FAST 1 (b)

 8 12 LOAD_FAST 0 (a)

 15 LOAD_FAST 1 (b)

 18 BINARY_ADD

 19 STORE_FAST 2 (c)

 9 22 LOAD_FAST 2 (c)

 25 LOAD_FAST 2 (c)

 28 BINARY_MULTIPLY

 29 STORE_FAST 3 (d)

 10 32 LOAD_FAST 3 (d)

 35 RETURN_VALUE

def x():

 a = 2

 b = 3

 c = a + b

 d = c * c

 return d

Page 4. NETID:

4. (10 points)

Provide the bytecode generated for the following Python function. Use dis.dis() format, but
without the source code line numbers from the first column.

def y():
 a = 7
 if a % 2:
 return 1 + 3*a
 else:
 return a / 2

>>> y()

22

>>> dis.dis(y)

 20 0 LOAD_CONST 1 (7)

 3 STORE_FAST 0 (a)

 21 6 LOAD_FAST 0 (a)

 9 LOAD_CONST 2 (2)

 12 BINARY_MODULO

 13 POP_JUMP_IF_FALSE 28

 22 16 LOAD_CONST 3 (1)

 19 LOAD_CONST 4 (3)

 22 LOAD_FAST 0 (a)

 25 BINARY_MULTIPLY

 26 BINARY_ADD

 27 RETURN_VALUE

 24 >> 28 LOAD_FAST 0 (a)

 31 LOAD_CONST 2 (2)

 34 BINARY_TRUE_DIVIDE

 35 RETURN_VALUE

 36 LOAD_CONST 0 (None)

 39 RETURN_VALUE

Page 5. NETID:

5. (10 points)

Write the UNIX command(s) corresponding to XXXX in the transcript below.

-bash-4.2$ pwd

/home/accts/sbs5/cs201

-bash-4.2$ ls

bin class graded handouts hws previous-years README SUBMIT

TESTS www

-bash-4.2$ mkdir mt

-bash-4.2$ cd mt
-bash-4.2$ pwd

/home/accts/sbs5/cs201/mt

-bash-4.2$ ls .. > f1
-bash-4.2$ ls -l

total 4

-rw-rw-r-- 1 sbs5 cs201ta 72 Oct 6 16:12 f1

-bash-4.2$ cat f1

bin

class

graded

handouts

hws

mt

previous-years

README

SUBMIT

TESTS

www

-bash-4.2$ cp f1 f2
-bash-4.2$ ls -l

total 8

-rw-rw-r-- 1 sbs5 cs201ta 72 Oct 6 16:12 f1

-rw-rw-r-- 1 sbs5 cs201ta 72 Oct 6 16:13 f2

-bash-4.2$ diff f1 f2

-bash-4.2$ rm f1
-bash-4.2$ ls -l

total 4

-rw-rw-r-- 1 sbs5 cs201ta 72 Oct 6 16:13 f2

-bash-4.2$ wc f2
11 11 72 f2

Page 6. NETID:

6. (10 points)

Define the decorator xxx() that has the following behavior.

@xxx

def incr(a):

 return a + 1

@xxx

def add2(a, b):

 return a + b

>>> incr(10)

Calling: incr with args: (10,)

Exiting: incr with value: 11

11

>>> add2(2,3)

Calling: add2 with args: (2, 3)

Exiting: add2 with value: 5

5

def xxx(f):

 def g(*args):

 print ("Calling: {} with args: {}".format(f.__name__, args))

 val = f(*args)

print ("Exiting: {} with value: {}".format(f.__name__, val))

return val

 return g

Page 7. NETID:

