Computer Science 201a, Prof. Dana Angluin 1

Turing machines

These notes describe Turing machines, a very simple model of a computer introduced by Alan Turing in his
1936 paper, “On Computable Numbers with an Application to the Entscheidungsproblem.”

The basic model

The memory of the machine is a tape, divided into squares. Each square can hold one symbol from a finite
alphabet of symbols. The blank is a special symbol, shown as b when we talk about it, but as the absence
of a symbol in a square in pictures. The tape extends an arbitrary number of squares left and right. The
tape alphabet is b, 0, 1 in this part of the lecture. A tape with some symbols on it may be pictured:

This is intended to show a portion of the tape containing the symbols Ob1b0010. Symbols to the left and
right of those shown are assumed to be blanks.

Access to the tape is via a read/write head, which is positioned at one of the squares of the tape. It may
be pictured as a = symbol under the tape square where the read/write head is located, the scanned square.
The symbol on the scanned square is the scanned symbol.

In this diagram, we’ve added the ~ symbol to indicate that the read/write head is scanning the third 0 from
the left. The machine can read and write the scanned symbol using its instructions (described below.)

In addition to the symbols stored on the tape, the machine may be in one of a finite number of states.
Following Turing’s usage, states are denoted by q1, g2, g3 and so on.

In the picture, we’ll put the symbol representing the current state underneath the symbol ~ representing
the read/write head.

Usually, the current state is shown in a little box, but that over-taxes our ASCII illustration skills. The
contents of the tape, the location of the read/write head, and the current state of the machine together are
a configuration.

In addition to tape, read/write head, and current state, the machine has instructions. Each instruction
specifies what to do based on the current state and the symbol being scanned. “What to do” includes what
the next state of the machine should be, what symbol to write on the tape in place of the symbol being
scanned and whether to move the read/write head one square to the right or left.

An example of an instruction is:



Computer Science 201a, Prof. Dana Angluin 2

If the current state is g3 and

the scanned symbol is 0O, then

make g6 the next state of the machine,

write a 1 on the tape in place of the scanned symbol,
and move the read/write head one square to the left.

This instruction applies in the configuration given above, and the effect of executing it is as follows.

We abbreviate instructions as 5-tuples. The instruction just considered is abbreviated as:
(g3, 0, g6, 1, L)

The order of elements in the 5-tuple are: the current state, the scanned symbol, the next state, the symbol
to write, and the direction to move the read-write head (R for right, L for left.)

A Turing machine has a finite set of instructions. In any configuration, we require that there be at most
one applicable instruction, that is, at most *one* instruction with a given current state and scanned symbol
pair. That is, we require the machine to be deterministic. As long as there is an applicable instruction, it is
executed to get a new configuration. If there is no applicable instruction, then the machine halts. The order
in which instructions are listed in a Turing machine has no effect on their execution.

Running an example
Consider an example machine containing the instructions:

(ql, 0, 92, 1, R)
(ql, 1, 92, 0, R)
(g2, 0, q1, 0, R)
(g2, 1, q1, 1, R)

Suppose we run this machine starting with the following configuration.

ql
The applicable instruction is (q1, 0, g2, 1, R), which specifies that that the machine go to state g2,

replace the scanned symbol 0 by 1 and move the read/write head one symbol to the right. The resulting
configuation is as follows.



Computer Science 201a, Prof. Dana Angluin 3

ql

As there is no applicable instruction, the machine halts. Although we used each instruction at most once
in this example, in general, each instruction may be used many times or not at all. In the homework, you
will be asked to write a Turing machine simulator to carry out the task of running a given Turing machine
starting with a given configuration. This particular machine flips every other symbol from 0 to 1 or vice
versa, and leaves the symbols in between unchanged. For example, if the input is 111000, the symbols on
the tape when the machine halts are 010010.

Suppose now we want to add states and instructions to this Turing machine to take the head back to the
beginning of the string of 0 and 1 symbols. We add the states 93 and g4 and the following instructions.

(q1, b, g3, b, L)
(g2, b, 93, b, L)
(g3, 0, 93, 0, L)
(g3, 1, g3, 1, L)
(g3, b, g4, b, R)

Once the machine reaches a blank (b) in state q1 or g2, it goes into state g3 and moves left. In state g3, it
moves left, leaving 0 and 1 unchanged until it reads a blank. Then it moves right into state g4 and halts,
because there is no applicable instruction.

A Turing machine to make a copy of its input

We now illustrate the process of designing a Turing machine to carry out a certain task. The task is to make
a copy of the input string. We assume the machine will be started in state q1 with its head on the leftmost



Computer Science 201a, Prof. Dana Angluin 4

symbol in a string of 0’s and 1’s, and its task is to make a copy of that string and halt. In more detail, we
specify that if the machine is started in the following configuation:

Note that it has made a copy of its binary input string, separating the two copies by the symbol c, and
returned the read/write head to the first nonblank symbol. We haven’t specified what state the machine is
in when it halts.

We'll choose to make the copy to the right of the input string (though that isn’t part of the specification.)
The first part of the computation will just run down the tape to the right until it finds the first blank, change
it to the symbol ¢, and return the head to the leftmost nonblank symbol. That much of the computation is
accomplished by states q1 and g2, with the following instructions.

(q1, 0, q1, O, R)
(q1, 1, q1, 1, R)
(q1, b, 92, c, L)
(g2, 0, g2, 0, L)
(g2, 1, 92, 1, L)
(g2, b, 93, b, R)

When the machine first reaches state q3 in the example, the configuration will be as follows.

q3

Intuitively, the machine must then look at the current symbol, and move the read/write head to the right
down the tape until the first blank and write a copy of the symbol it read. To keep track of whether it read
a 0 or a 1, the machine will use different states, namely g4 or g5.

Another thing the machine has to keep track of is which of the input symbols it is currently copying. To
do that, it will rewrite the symbol that it reads, replacing a 0 by a d and a 1 by a e. Later, it will rewrite d
by 0 and e by 1 to restore the original input. So far, the instructions for state q3 are as follows:

(g3, 0, g4, d, R)
(g3, 1, 95, e, R)

The job of state g4 is to move down the tape, copying 0’s, 1’s and the c, until it gets to the first blank,
where it will write a 0. The job of state g5 is similar to that of state g4, except that when it finds a blank
it writes a 1. With no further need to remember 0 or 1, both states will go to state g6.



Computer Science 201a, Prof. Dana Angluin 5

(g4, 0, g4, 0, R)
(g4, 1, q4, 1, R
(g4, ¢, 94, ¢, R)
(g4, b, 96, 0, L)
(g5, 0, g5, 0, R)
(g5, 1, g5, 1, R)
(g5, ¢, 95, ¢, R)
(g5, b, g6, 1, L)

When the machine reaches state g6 for the first time in the example, the configuration will be as follows.

q6

In state g6, the machine can move left copying 0, 1, or c until it reaches a d or e, which indicates the
preceding copied symbol. It can change d back into 0 or e back into 1, and then move right into state g3,
to initiate the copying operation for the next symbol of the input.

(g6, 0, g6, 0, L)
(g6, 1, g6, 1, L)
(g6, ¢, 96, c, L)
(g6, d, 93, 0, R)
(g6, e, 93, 1, R)

The next time the machine reaches state g3 in the example, the configuration will be as follows.

Then the machine will change this 1 to an e, move right in state g5 until the first blank, write a 1, and enter
state g6 again. At that point, the configuration will be as follows.

From here, the machine moves left until it reaches the e, which it changes back to a 1, moving right into
state 3. At this point, the configuration will be as follows.



Computer Science 201a, Prof. Dana Angluin 6

At this point, the machine changes the 0 to a d and moves right in state g4 until it reaches the first blank,
where it writes a 0 and moves left into state g6. At this point, the configuration of the machine is as follows.

The machine copies the 1 to the end of the string, and the next time the machine enters state q3 the
configuration will be as follows.

q3
At this point, the input is correctly copied, and there is no instruction specified for the machine in state q3

with scanned symbol c. However, the problem specified that the head should be returned to the leftmost
nonblank symbol, so we use a new state, q7, for that purpose:

(93, ¢, q7, c, L)
(q7, 1, q7, 1, L)
(g7, 0, q7, 0, L)
(q7, b, 98, b, R)

These instructions will cause the machine to halt in the following configuration, as desired.

This completes our construction of the Turing machine to copy its input. On the next page we give all of
its instructions in one place, with comments.



Computer Science 201a, Prof. Dana Angluin

Turing machine to make a copy of its input

(q1, 0, a1, O,
(q1, 1, q1, 1,
(q1, b, 92, c,
(92, 0, 92, O,
(92, 1, 92, 1,
(92, b, g3, b,
(qS, O: q4: d,
(g3, 1, g5, e,
(@3, ¢, q7, c,
(g4, 0, 94, O,
(g4, 1, 94, 1,
(g4, c, 94, c,
(g4, b, g6, 0,
(g5, 0, g5, O,
(g5, 1, 95, 1,
(g5, ¢, 95, c,
(g5, b, g6, 1,
(g6, 0, g6, O,
(g6, 1, g6, 1,
(g6, c, g6, c,
(g6, d, 93, 0,
(g6, e, 93, 1,
(q7’ O, q7’ 0:
(q7, 1, q7, 1,

(q7, b, 98, b

R)
R)
L)

L)
L)
R)

R)
R)
L)

R)
R)
R)
L)

R)
R)
R)
L)

L)
L)
L)
R)
R)

L)
L)
R)

move right over 0’s
move right over 1’s

change first blank to c, move left to

move left over 0O’s
move left over 1’s
at first blank, move right to g3

change O to d, move right to q4
change 1 to e, move right to g5

Cc means copying is over, move left to

move right over 0’s

move right over 1’s

move right over c

replace first blank with O, move

move right over 0’s

move right over 1’s

move right over c

replace first blank with 1, move

move left over 0’s

move left over 1’s

move left over c

change d back into 0, move right
change e back into 1, move right

move left over O’s
move left over 1’s

left

left

to g3
to g3

q2

q7

to g6

to g6

at first blank, move right and halt (q8)

On the next pages we illustrate a complete run of this machine.



Computer Science 201a, Prof. Dana Angluin 8

A run of the copying Turing machine

We exhibit a run of the copying machine on the input 100. In the first phase, the machines adds a c to the
end of the input and returns the head to the leftmost nonblank symbol.

l 1 | 0o | o |
ql
|l 1 | o | 0 |
ql
|l 1 | o | 0 |
ql
|l 1 | o | 0 |
ql
| 1+ | o | o | ¢ |
q2
|l 1+ | o | o | ¢ |
q2
[ 1t | o | o | ¢ |
q2
[ 1t | o | o | ¢ |
q2
| l 1 [ o | o | ¢ |



Computer Science 201a, Prof. Dana Angluin 9

State g3 is the “main loop” of the machine, to note the next symbol, copy it to the end of the string,
and get into position to copy the next symbol. (For convenience, we repeat the last configuration from the
previous page.)

| 1+ | o | o | ¢ |
q3
|l e | 0 | 0 | ¢ |
qb
|l e | 0 | 0 | ¢ |
qb
|l e | 0 | 0 | ¢ |
a5
e | 0O | O | ¢ |
qb
e | 0O | O | ¢ | 1 |
q6
e | 0O | O | ¢ | 1 |
q6
e | 0| O | ¢ | 1 |
q6
e | 0ol O | ¢ | 1 |
q6
| 1+ 1 o | O | ¢ | 1 |



Computer Science 201a, Prof. Dana Angluin

Next the machine copies the second symbol.

|l 1. 1 o | o | ¢ | 1 |
q3
| 1 | 4 | o | ¢ | 1 |
q4
[ 1+ | 4 | o | ¢ | 1 |
qé
Il 1 1 4 1 0 | ¢ | 1 |
q4
l 1+ | 4 | o | ¢ | 1 |
q4
l 1+ | 41 0o | < | 1 | 0O |
q6
| 1+ | 4 | o | ¢ | 1 | 0 |
q6
| 1+ | 4 | o | ¢ | 1 | 0 |
q6
l 1+ [ 4 | 0 | ¢ | 1 | 0 |
q6
l 1+ [ o | O | ¢ | 1 | 0 |

10



Computer Science 201a, Prof. Dana Angluin

Next the machine copies the third symbol.

/| 1 1 o | O | ¢ | 1 | 0O |
q3
l 1+ | o | 4 | ¢ | 1 | 0 |
qé
l + | o | a4 | < | 1 | 0 |
q4
l 11 o | d4 | ¢ | 1 | 0 |
q4
l 1+ | o | a4 | < | 1 | 0 |
q4
l 11 0o | d4 | ¢ | 12 1 0 | 0 |
q6
l ¢+ | o | 4 | < | 1 | o | 0o |
q6
l ¢+ | o | 4 | < | 1 | o | 0o |
q6
l 1 I o | 4 | ¢ | 1 1 0o | O |
q6
l 1. 1 o | O | ¢ | 1 1 o0 | O |

11



Computer Science 201a, Prof. Dana Angluin 12

At this point, the machine moves left into state q7, which moves left copying symbols until the first blank,
at which point it moves right and halts in state g8 (which has no instructions.)

| ¢+ [ o o | ¢ | 1 1 o 1| O |
q7
| 1+ | o | o | ¢ | 1 1 0 | 0O |
q7

| ¢+ o o | ¢ | 1 1 o 1| o |
q7

| ¢+ o o | ¢ | 1 1 o 1| o |

q7

I I 11 o | o | ¢ | 1t | O | O |

q8

Indeed the life of a Turing machine can get pretty tedious. This is a model of computation designed to be
simple (and perhaps mathematically tractable) rather than programmer-friendly.



