
Computer Science 201a, Prof. Dana Angluin 1

Context free languages, context free grammars, and BNF

We describe context free languages, context free grammars, and Backus Naur Form (BNF) grammars.
Although the set of palindromes is not a regular language, it is a context free language.

Context free languages and BNF

We consider a more powerful method of specifying sets of strings, namely, context free grammars. There
are different notations for context free languages; we’ll illustrate grammars in both the standard linguistics
format and in Backus Naur Form (BNF).

A context free grammar consists of two finite alphabets, a terminal alphabet T and a nonterminal alphabet
N , a start symbol (an element of N) and a finite set of rules. Each rule is of the form X → γ, where X is a
single nonterminal symbol, and γ is a (possibly empty) string of terminal and nonterminal symbols.

As an example, we consider a grammar for the set of strings over the alphabet {a, b} that are palindromes.
The terminal alphabet T is {a, b} and the nonterminal alphabet N is {S}. The start symbol is S. The rules
are S → λ, S → a, S → b, S → aSa and S → bSb.

Given a grammar G, we define the language of G, denoted L(G), as follows. If α, β, and γ are strings of
terminals and nonterminals and X is a nonterminal such that X → γ is a rule of the grammar, then we say
that αXβ derives αγβ in a single step, denoted αXβ ` αγβ. Then L(G) is the set of all strings of terminals
that can be derived in a finite number of steps from the start symbol.

In the example grammar, the start symbol is S. Using the rule S → λ, we have S ` λ. Because λ is a(n
empty) string of terminal symbols, we conclude that λ is in L(G). Similarly, we can derive the strings a and
b in one step, so these also are in L(G). The following multi-step derivation shows that abbba is in L(G).

S ` aSa ` abSba ` abbba.

It should be relatively clear that we can derive any palindrome using these rules, and that every string of
terminals that we can derive is a palindrome. A language (set of strings) is context free if there is a context
free grammar for it.

An equivalent notation for context free languages is Backus Naur Form (BNF). In BNF the set of
palindromes over {a, b} can be denoted as follows.

<palindromes> ::= <empty> | a | b | a<palindromes>a | b<palindromes>b

The notation <empty> denotes the empty string, λ. This may be viewed as a recursive definition of the
set of palindromes. The base cases are λ, a, and b. The recursive cases are that if we have a palidrome s,
then s with an a concatenated at each end is a palindrome, and s with a b concatentated at each end is a
palindrome.

As for a context free grammar, a BNF grammar has a finite set of terminal symbols, a finite set of
nonterminal symbols, a start symbol (one of the nonterminal symbols), and a finite set of rules. Each rule
has a lefthand side, which is one of the nonterminal symbols, and a righthand side, which is a finite string
of terminal and nonterminal symbols, possibly empty (which we denoted by <empty> above.) The lefthand
and righthand sides are separated by ::=.

In terms of the example above, the set of terminal symbols is {a, b}, the set of nonterminal symbols is
{< palindromes >}, the start symbol is < palindromes >, and there are five rules:

Computer Science 201a, Prof. Dana Angluin 2

<palindromes> ::= <empty>
<palindromes> ::= a
<palindromes> ::= b
<palindromes> ::= a<palindromes>a
<palindromes> ::= b<palindromes>b

There is a convention to abbreviate several rules with the same lefthand side by separating the different
righthand sides with the symbol |, as shown above. (This convention is also used for context free grammars
in standard linguistics notation.)

Parse trees

Parsing is the process of determining whether a given string can be derived from a give context free grammar.
One way to depict the derivation of a string using a grammar is via a parse tree. For example, for the
palindrome abba, we construct a parse tree in stages from the start symbol <palindromes>

<palindromes>

The start symbol <palindromes> is rewritten using the rule

<palindromes> ::= a<palindromes>a

giving the tree

<palindromes>
/ | \

/ | \
a <palindromes> a

Then <palindromes> is rewritten using the rule

<palindromes> ::= b<palindromes>b

giving the tree

<palindromes>
/ | \

/ | \
a <palindromes> a
/ | \

/ | \
b <palindromes> b

Finally, <palindromes> is rewritten using the rule

<palindromes> ::= <empty>

giving the tree

Computer Science 201a, Prof. Dana Angluin 3

<palindromes>
/ | \

/ | \
a <palindromes> a
/ | \

/ | \
b <palindromes> b

|
|

<empty>

If we concatenate together all the leaves, left to right, we get the string abba, as desired.

An interesting challenge is to write a context free grammar for the set of all strings over the alphabet
{a, b} that contain an equal number of a’s and b’s.

(Spoiler: One possible solution is the grammar

S → λ|SaSbS|SbSaS.

For example, to generate the string abba, which has 2 a’s and 2 b’s, we can proceed as follows.

S ` SbSaS ` SbSa ` Sba ` SaSbSba ` SaSbba ` Sabba ` abba.

It is not difficult to see that the set of terminal strings derivable from S must have an equal number of a’s
and b’s; it is a bit more challenging to see why every such string is derivable from S.)

Also: can we find a context free grammar for the set of all strings over the alphabet of {a, b, c} that have
an equal number of a’s, b’s, and c’s?

