
Computer Science 201a, Prof. Dana Angluin 1

Regular expressions

Historically, a large part of the communication between humans and computers has been in the form of
strings, that is, finite sequences of characters. Considerable infrastructure has been developed in computer
science for the specification, representation, and processing of sets of strings. Regular expressions are one
such representation. We start with an application of regular expressions: the linux search utility egrep.

An egrep search

Imagine that I decided to find out how many times I had used car in my solution for homework 1, which is
in a file called hw1-solution.scm. I choose to do a search as follows.

termite> egrep ’car’ hw1-solution.scm

((equal? itm (car lst)) (remove itm (cdr lst)))

(else (cons (car lst) (remove itm (cdr lst)))))))

...

The command egrep invokes a linux utility to search for lines that match a given pattern in a file (or files.)
The characters between the quotes specify the pattern to look for, in this case, the literal occurrence of car
somewhere on the line. The results of the search are to print out each line of the file that matched the
pattern. (I have not shown all 16 lines of the results.) The pattern is specified by means of an “extended
regular expression.”

As an aside, we describe some additional linux functionality that may make egrep more useful to you.
To put the results of a search in a file instead of on the screen, we can use the “redirect” capability. For
example the following command puts the 16 lines of egrep output in the file named temp.txt.

termite> egrep ’car’ hw1-solution.scm > temp.txt

termite>

The greater than (>) character indicates that the output of the command should be placed in the indicated
file. I could then choose to look at this file in a text editor; I could also use the word-count utility (wc) on
it as follows.

termite> wc temp.txt

16 146 862 temp.txt

termite>

This shows that the file contains 16 lines, 146 words and 862 characters. Thus, the egrep command found
16 lines of the file that contained the substring car at least once. If all I was interested in was the word
count of the results of the egrep, I could “pipe” the output of the egrep command to the wc command as
follows. Here the vertical bar (|) indicates that the output of the first command becomes the input of the
second command.

termite> egrep ’car’ hw1-solution.scm | wc

16 146 862

termite>

These facilities to redirect and search output can help you deal with the occasional verbosity of the autograde
program.

Computer Science 201a, Prof. Dana Angluin 2

Strings

We now briefly describe the mathematical treatment of strings. Strings are defined over some finite alphabet
of symbols, for example, {a, b, c}. Traditionally, the alphabet is denoted by Σ and an arbitrary symbol by σ.
A string is a finite sequence of symbols from the alphabet, for example aaab or abaccabb. There is an empty
string, of no symbols, which we’ll denote by ε. (The empty string may also be denoted by λ.) A fundamental
operation on a string is to add a symbol at the start of the string (analogous to cons’ing an element onto
a list). Others are to identify the first symbol of a non-empty string (analogous to car) and remove the
first symbol of a non-empty string (analogous to cdr). Two strings s1 and s2 may be concatenated, which
consists of forming the string consisting of the symbols of the first string followed by the symbols of the
second string (analogous to appending two lists.) The operation of concatenation is denoted by ·. For
example, concatenating aabca with bbacaaa results in the string aabcabbacaaa. That is

aabca · bbacaaa = aabcabbacaaa.

Definitions and proofs concerning strings are generally inductive. For example, we can define the con-
catenation of two strings s1 and s2 inductively as follows. If s1 is the empty string, then the concatenation
of s1 and s2 is just s2. If s1 is not empty, then it consists of a symbol σ followed by a string t, and the
concatenation of s1 and s2 is obtained by concatenating t and s2 and adding σ as the first element of the
result. (Compare this definition with our recursive procedure to append two lists in Racket.) Similarly, the
length of a string (the number of symbols it contains) can be defined inductively as follows. The length of ε
(the empty string) is 0. If s is a nonempty string, then s consists of a symbol σ followed by a string t, and
the length of s is 1 more than the length of t. For example, the length of the string aabca is 5.

A set of strings is called a language. This terminology comes from the use of formal languages and
grammars as models of natural languages and grammars in linguistics.

Definition of basic regular expressions

In this section, we define “basic” regular expressions and specify what sets of strings they denote. We’ll
return to the extended regular expressions of egrep after we understand these.

Regular expressions are defined over a finite alphabet of symbols, for example, {a, b, c}. The definition
is recursive (or inductive). (1) The base cases are that ε is a regular expression, and each symbol σ by itself
is a regular expression. (2) For the inductive cases, assume that E1 and E2 are regular expressions. Then
(E1 · E2) is a regular expression, (E1|E2) is a regular expression, and (E1)

∗ is a regular expression.

The centered dot · is used to indicate concatenation, and will be omitted when possible. Extra parentheses
will also be omitted, using an operator precedence that says ∗ has higher precedence than ·, which has higher
precedence than |. Thus, putting the parentheses and centered dots back into a|bc∗, we get (a|(b · (c)∗)).

Using these rules, we can build up a collection of regular expressions over the set {a, b, c} as follows.

ε, a, b, c, ab, bc, abc, (a)∗, (a|b), (a|b)c, b(a|c)∗a, . . .

Clearly, the set of regular expressions is infinite, (but countably so.)

In addition to being able to construct regular expressions, we’d like to know what they mean, or denote.
If E is a regular expression, we’ll use L(E) for the “language of E”, that is, the set of strings denoted by
the expression E. This is defined inductively, paralleling the syntactic structure of regular expressions.

For the base cases, the set of strings denoted by ε is just {ε}, and the set of strings denoted by a single
symbol σ is just {σ}. Thus, L(a) = {a}, L(b) = {b}, and L(c) = {c}. For the inductive cases, assume that
E1 and E2 are regular expressions denoting L1 and L2 respectively. (That is, L(E1) = L1 and L(E2) = L2.)

Computer Science 201a, Prof. Dana Angluin 3

The regular expression E1 · E2 denotes the language L1 · L2, where

L1 · L2 = {s1 · s2 : s1 ∈ L1, s2 ∈ L2}.

That is, we consider the set of all strings obtained by choosing a string s1 from L1 and a string s2 from L2

and concatenating the two strings to get s1 · s2. The set of strings we can obtain in this way is the set of
strings denoted by E1 · E2.

The regular expression (E1|E2) denotes the set of strings L1 ∪ L2, the union of the sets L1 and L2, that
is, the set of strings that are in L1 or L2 or both. Here ∪ just denotes the usual operation of taking the
union of two sets.

The regular expression (E1)
∗ denotes the set of strings that can be obtained by choosing (with replace-

ment) and concatenating any finite number of strings from L1. Since the “finite number” includes 0, we
have that the empty string ε is always in L((E1)

∗).

We use these definitions to figure out the denotations of the regular expressions constructed above. From
the base case we have that

L(ε) = {ε}, L(a) = {a}, L(b) = {b}, L(c) = {c}.

Then using the definition of L(E1 · E2) we have

L(ab) = {ab}, L(bc) = {bc}, L(abc) = {abc}.

Thus, each string denotes the set consisting of that single string.

Using the definition of L(E1|E2) we have that

L(a|b) = {a, b}, L((a|b)c) = {ac, bc}.

Thus, L((a|b)(a|b)) contains exactly the four strings aa, ab, ba, bb.

Using the definition of L((E1)
∗), we consider L((a)∗). This set includes the empty string, ε. It also

consists of the string obtained by choosing one a, or two a’s, or three a’s, etc. Thus,

L((a)∗) = {ε, a, aa, aaa, aaaa, aaaaa, . . .}.

That is, L((a)∗) is the set of all strings containing 0 or more a’s.

Considering (a|c)∗, we get the empty string, ε, any string consisting of one string from L(a|c), that is, a or
c, any string consisting of a concatenation of two strings drawn (with replacement) from L(a|c), that is, aa,
or ac, or ca, or cc, any string consisting of a concatenation of three strings drawn (with replacement) from
L(a|c), namely, aaa, aac, aca, acc, caa, cac, cca, ccc, and so on. That is, L((a|c)∗) is any string consisting
of a’s and c’s.

Finally, considering b(a|c)∗a, we see that this denotes the set of strings that begin with b, have any string
of a’s and c’s, and end with a. This includes strings such as ba, baa, bca, baaa, baca, bcaa, bcca, and so on.

Thus, over the alphabet {a, c, d, r}, the expression c(a|d)(a|d)∗r matches any string that begins with c,
has an a or a d followed by any string of 0 or more a’s and d’s, and ending with an r. Or, in other words,

L(c(a|d)(a|d)∗r) = {car, cdr, caar, cadr, cdar, cddr, caaar, caadr, . . .}.

Back to egrep

Note that the egrep utility takes a regular expression and for each line determines whether a *substring* of
the characters on that line is denoted by the regular expression. That is, only part of the line has to match
the expression to produce a match.

Computer Science 201a, Prof. Dana Angluin 4

Egrep incorporates certain convenient extensions to the regular expression notation defined in the pre-
ceding subsection including the following. The symbol . matches any single character. The expression
[aeiou] matches any single character in the set of characters between the brackets, that is, it is equivalent
to (a|e|i|o|u). In a set, ranges of characters such as A-Z or a-z or 0-9 can be used. Thus, [A-Za-z]
matches any single upper or lower case letter. Also, the expression [^aeiou] matches any single character
NOT in the set containing a, e, i, o, and u. Using + in place of ∗ means one or more occurrences of strings
from the set, rather than zero or more occurrences of strings from the set. Thus, (ab)+ denotes the set of
strings obtained by one or more repetitions of ab. Note that we could get the same effect with ab(ab)*.
Using ? in place of ∗ means zero or one occurrences of strings from the set. Thus, yog(h)?urt will match the
two strings yogurt and yoghurt. This is by no means all of what is available in extended regular expressions,
but enough to indicate their potential usefulness.

Suppose we define an “identifier” to be any string of characters that begins with an upper or lower case
letter and has 0 or more upper or lower case letters or digits following that. Then examples of identifiers are
A, Start and v223x. The following egrep expression denotes the set of all identifiers.

[A-Za-z][A-Za-z0-9]*

