PART I

1. (15 points)
Consider the outcome space Ω of all strings of length 4 over the alphabet \{a, b, c, d, e\} that contain no repeated letters. Thus, $acbe \in \Omega$, but $baca \notin \Omega$. The probability function $\Pr : \Omega \rightarrow [0, 1]$ assigns the same probability to every element of Ω. For each $i = 1, 2, 3, 4$, let X_i be the value of the ith letter, numbering from the left. Please give justifications for your answers to the following.

(a) How many elements are there in Ω, and what is the probability of each one?

(b) Let A be the event that $X_1 = a$ and B be the event that $X_2 = b$. What are $\Pr(A)$ and $\Pr(A \cap B)$?

(c) For the events A and B defined in part (b), what is $\Pr(B \mid A)$? Are the events A and B independent?

(d) For every pair (i, j) of integers such that $1 \leq i < j \leq 4$, define the random variable $Y_{(i,j)}$ to be 1 if letter X_i alphabetically precedes letter X_j, or 0 otherwise. What is $\Pr(Y_{(1,4)} = 1)$?

(e) Let the random variable Y be the sum of the all the random variables $Y_{(i,j)}$ defined in part (d). For every value that Y can take on, give an example of an element of Ω for which it takes that value. What is $E(Y)$?

2. (15 points) Let X be a binomially distributed random variable with $p = 0.7$ and $n = 3$.

(a) Give a table of the values (as decimal fractions) of the probability distribution for X.

(b) Which value of X has the highest probability? Is it more probable that X will be even or more probable that X will be odd?
(c) What are the expectation and variance of X? (See Chapter 12 for definitions.)

3. Suppose there are three identical looking coins: C_i for $i = 1, 2, 3$, with probability of heads of 0.25, 0.50, and 0.75, respectively. I cannot tell the coins apart, but I select one of the three coins uniformly at random and hand it to someone, who flips it three times and reports that there were two heads and a tail, (but not the order in which these occurred.)

(a) (5 points) Describe an outcome space Ω and probability function $\Pr : \Omega \rightarrow [0, 1]$ to represent this experiment. You should be able to represent the event A_i that I chose coin C_i (for $i = 1, 2, 3$) and the event B that three flips yielded two heads and one tail.

(b) (5 points) What is the probability of the event B?

(c) (10 points) Because I select a coin equiprobably, we have $\Pr(A_i) = 1/3$ for $i = 1, 2, 3$. Calculate $\Pr(A_i \mid B)$ for $i = 1, 2, 3$. (Hint: Bayes’ Theorem might help.)

PART II

4. (15 points) Find the inverse of the following matrix A, showing the steps of Gauss-Jordan elimination (described in Chapter 13). Use fraction arithmetic, not decimals.

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 0 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$

5. (15 points) Use matrix identities (from 13.3.3) to show that if A is an $n \times n$ dimensional matrix that is invertible, then the function $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ defined by $f(\vec{x}) = A \cdot \vec{x}$ for all $\vec{x} \in \mathbb{R}^n$ is bijective.

6. Let the matrix A be given by

$$A = \begin{pmatrix} 3 & -3 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Let $\vec{x} = (9, 4, 1)^T$ be a column vector. (It is written as a row vector, with an indication it should be transposed to get a column vector.)

(a) (10 points) Compute $A \cdot \vec{x}$ and $A^2 \cdot \vec{x}$.

(b) (10 points) Conjecture and prove a formula giving $A^n \cdot \vec{x}$ in terms of n, for all $n \in \mathbb{N}$.