Please turn in your homework in six separate parts, one for each problem. Put your name, the homework number, and the problem number on each part. Please list with problem 1 any persons (including course staff) or resources (including online) you consulted with in connection with this assignment.

The power set of the set A is $\mathcal{P}(A)$. The integers are

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \ldots \}.$$

The natural numbers, or nonnegative integers, are

$$\mathbb{N} = \{0, 1, 2, 3, \ldots \}.$$

PART I

1. (15 points) We define four sets as follows.

$$A = \{ x \in \mathbb{Z} \mid (-2 \leq x) \land (x \leq 4) \}$$
$$B = \{ x \in \mathbb{Z} \mid \exists y \in \mathbb{Z} (x = y^2) \}$$
$$C = \{ x \in \mathbb{Z} \mid \lceil x/2 \rceil \geq 1 \}$$
$$D = \{ x \in A \mid \exists y \in \mathbb{Z} (x = 3y + 1) \}$$

Give each of the following sets by explicitly listing its elements using set braces and commas.

(a) $A =$
(b) $A \cap B =$
(c) $A \setminus C =$
(d) $\mathcal{P}(D) =$
(e) $(A \cap B) \times D =$

2. (15 points) Use the axiom of extensionality, the definitions of subset and the set operations, and case arguments to prove the following statements. Do not include Venn diagrams in your answers. Assume A, B, and C are subsets of \mathbb{Z}.

(a) For all sets A, B, and C,

$$(A \cup C) \cap B \subseteq (A \cap B) \cup C.$$

(b) For all sets A and B,

$$(A \cup B) \subseteq (A \setminus B) \cup (B \setminus A) \cup (A \cap B).$$

1
(c) For all sets A, B, and C, if $(A \setminus C) \subseteq (B \setminus C)$ and $(B \setminus A) \subseteq (C \setminus A)$ and $(C \setminus B) \subseteq (A \setminus B)$ then \((A \cup B \cup C) \subseteq (A \cap B) \cup (B \cap C) \cup (A \cap C)\).

3. (20 points) We let $B = \mathcal{P}(\mathbb{N})$.

(a) There exists an injective function f with domain \mathbb{N} and co-domain B. Give an example of such an f.

(b) Show that the function f you gave in part (a) is not surjective.

(c) Let g be an arbitrary function with domain \mathbb{N} and co-domain B. Let the set S be given by the following.

\[
S = \{n \in \mathbb{N} \mid n \notin g(n)\}.
\]

Prove that for all $n \in \mathbb{N}$, $g(n) \neq S$.

(d) Assuming that (c) is true, why do this show that $\mathcal{P}(\mathbb{N})$ is uncountable?

4. (15 points) Let $A = \{x \in \mathbb{N} \mid 3$ does not divide $x\}$ and $B = \{x \in \mathbb{N} \mid x$ is even\}. Give functions q, r and s with domain A and co-domain B having the following properties, and prove that they have the properties stated.

(a) $q : A \rightarrow B$ is surjective but not injective.

(b) $r : A \rightarrow B$ is injective but not surjective.

(c) $s : A \rightarrow B$ is bijective.

5. (15 points) Let f and g be functions with domain and co-domain \mathbb{Z}. Prove or disprove each of the following statements. (Recall that $f \circ g$ is the composition of f and g.)

(a) If f and g are injective then $(f + g)$ is injective.

(b) If f and g are surjective then $(f \circ g)$ is surjective.

(c) If f and g are bijective then $f \circ (g^{-1}) = g \circ (f^{-1})$.

6. (20 points) Let

\[
P = \mathbb{N} \times \mathbb{N}
\]

and for each $d \in \mathbb{N}$,

\[
P_d = \{(m, n) \in P \mid m + n = d\}.
\]

(a) Give P_4 as an explicitly listed finite set of elements.

(b) How many elements does P_d have as a function of d?

(c) Prove that there exists an injective function from P to \mathbb{N}.

(d) Explain why the truth of (c) proves that P is countable.