Breadth-First Search

1. Starting from s, find vertices 1 edge from s.
2. Find vertices 2 edges from s.

- 3 edges
- 4 edges

- $O(n^2)$ storage if store radius pullout each node...

- $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \cdots \rightarrow n$

- Keep track of stats: unseen / seen / done

- Distance

- Parent

- Unseen

- Add next to queue as we see them
BFS(V,E,from)

for each vertex u in V
 color[u] ← UNSEEN
 d[u] ← infinity
 parent[u] ← NULL

color[from] ← PROCESSING
d[from] ← 0
parent[from] ← NULL
Q ← [from]

while not Q.isEmpty()
 u ← Q.dequeue()
 for each v adjacent to u
 if color[v] == UNSEEN
 parent[v] ← u
 d[v] ← d[u] + 1
 color[v] ← PROCESSING
 Q.enqueue(v)
 color[u] = DONE

O(n + m) total (another form of for each vertex v for adjacent list)
for each edge from v

O((n + m) total (using linked list or array w/ changing start index)
Depth-First Search

Depth-first search: Keep following edges from current vertex
Backtrack when no edges to unvisited vertices

finds cycles \(\text{(when sees edge to processing vertex)} \)

Cycles

when examining \(6 \to 3 \), see that 3 is processing (recursive call not done)
\[\text{cycle!} \]

Topological Sort — for a directed acyclic graph
orders verts so edges go in one direction
Topological Sort

for a directed acyclic graph
orders verts so edges go in one direction

Longest Path
DFS-VISIT(G, u)
 color[u] <- PROCESSING
 discovery[u] <- time++
 for each v adjacent to u
 if (color[v] == UNSEEN)
 pred[v] <- u
 DFS-VISIT(G, v)
 finish[u] <- time++
 color[u] <- DONE

DFS(G)
 for each u in G.V
 color[u] <- UNSEEN
 time <- 0
 for each u in G.V
 if color[u] = UNSEEN
 DFS-VISIT(G, u)

more useful in DFS-based algo than distance

to restart search
at new point when
completely stuck
(useful for some applications
of DFS, including topo sort)