CPSC 426/526

Course Introduction

Ennan Zhai

Computer Science Department
Yale University
Welcome

• My name: Ennan Zhai

• Associate Research Scientist at CS department

• Research interests:
 - Large-scale distributed systems, e.g., cloud systems
 - Security, privacy and applied crypto
 - Programming language and verification
 - See more: http://www.cs.yale.edu/homes/zhai-ennan/
Have you used distributed system?
What is a distributed system?

You know you have a **distributed** system when the **crash** of a computer you’ve never heard of stops you from getting any work done.

– Leslie Lamport
What is a distributed system?

- A system of multiple computers (nodes) communicating over a network
What is a distributed system?

- A system of multiple computers (nodes) communicating over a network

Some following questions:
- What is a decentralized system?
- What is a cloud system?
- What is a centralized distributed system?
Why should I care?

• Real life is full of distributed systems
Why should I care?

- Real life is full of distributed systems
Why should I care?

- Real life is full of distributed systems

- Understand what’s underneath distributed systems
 - How do they work? What are Pros. and Cons?
 - Technologies: MapReduce, DHT, etc.
Why should I care?

• Real life is full of distributed systems

• Understand what’s underneath distributed systems
 - How do they work? What are Pros. and Cons?
 - Technologies: MapReduce, DHT, etc.

• Understand the underlying principles
 - How do you make your systems scalable and robust?
 - Smart designs and very difficult problems
Why should I care?

- Use correct way to build your own systems
 - How to build a workable system?
 - Need to scale, be efficient, avoid failures, etc.

- Gain practical experience with technologies
 - The best way to understand it is to build one yourself
 - In our course, you will build some workable systems

- Anticipate what’s possible in the future
What can I learn?

How I feel when my code works.
What can I learn?

• The principle in distributed systems
 - Cover various systems, including reliability and security
 - Go through their design details

• Examine a number of real, past and present systems
 - How they work
 - How and why they succeeded or failed

• Solidify this knowledge by applying it to build workable distributed systems
Lecture Roadmap

• Introduction
• Course Logistics
• Overview
Course Staff

<table>
<thead>
<tr>
<th>Name</th>
<th>Ennan Zhai</th>
<th>Peizhen Guo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role</td>
<td>Instructor</td>
<td>TA</td>
</tr>
<tr>
<td>Email</td>
<td>ennan.zhai@yale.edu</td>
<td>peizhen.guo@yale.edu</td>
</tr>
<tr>
<td>Office hour</td>
<td>Wed. 3-4pm</td>
<td>TBD</td>
</tr>
<tr>
<td>Office</td>
<td>AKW 210</td>
<td>HLH17 Room 228</td>
</tr>
</tbody>
</table>

Please send your email to cs426ta@cs.yale.edu, if you have any questions. Both Peizhen and I will see your email.
Prerequisites

• Good C++ programming skills
 - No need to be a ‘hacker’
 - Need a lot of programming experience
 - DO NOT ASK TA TO DEBUG FOR YOU

• Some familiarity with Linux command line
 - Need to remotely access the Zoo
 - Need to use git repository in the Zoo
Prerequisites

• Basic network knowledge
 - Know how network works, e.g., DNS and routing
 - How nodes communicate with nodes

• Basic system knowledge
 - Responsibilities of software and hardware
 - How does a software system run on your computer
Course Workload

• Midterm (15%) and final (15%)
 - In class and close-book
 - Test your understanding to our lectures

• Four Labs (15% * 4 = 60%)
 - Programming intensive labs
 - Lab4 needs you to define spec and present demo

• Student presentations (10%)
 - Four groups, each for one lecture
 - I will assign papers with different topics to different groups
Midterm and Final

• Midterm (Oct 16) and Final (Nov 29)
 - Final exam will not cover the knowledge before midterm
 - No multiple choices, code writing or complex computation
About Regular Labs

- Three regular labs
 - Build small but workable system, named Peerster
 - Follow my spec posted on our website
 - Bakeoff version and final version
 - No group
 - Test against my reference Peerster

[Image: An iceberg representing output of the program and actual code]
About Regular Labs

• Labs will be built upon previous labs
 - Do not keep deep bugs
 - Make your code modular, flexible and clean

- Lab4: Your own system
- Lab3: File sharing and downloading
- Lab2: NAT and Messaging
- Lab1: Gossip
WHEN CODE IS LITTLE

CODE AFTER SOME TIME
About Lab4

- Define your topic and specification
- Build your lab4 on your peerster
- We will offer some alternative topics to you
- 1-3 students in one group
- Graduate students MUST take research topics
- Present your lab4 in the last two classes
Demo for Lab4
Lab4 may produce papers :)
- I have advised many Yale students for their research projects
- We published papers together based on these projects in the top-tier computer conferences, e.g., NSDI
- If you are interested in publishing papers, work hard on lab4
- I can offer you concrete topics to work on
- I can answer any question during your implementation
- The result will be submitted to top-tier conferences
Policies: Collaboration

- Can we work on labs together? No
- Can I discuss the assignment with others in general terms? Yes
- Can I use code I copied from the web? No
- Can I ask questions about labs? Yes
- I happened to leak my password, and XYZ happened to find it. Will I be penalized for this? Yes
Using Git Repo.

• Be familiar with using git repo
 - Track your version history
 - Submit your labs
 - Recover previous workable versions
Penalty

• For all the four labs
 - The late penalty is 10% per day for the most 3 days
 - No credit for the case more than 3 days late
Expected ‘Payoff’

• You will acquire a set of skills and knowledge that is very high demand right now
 - At Google, Microsoft and at many other places
 - They will be useful in interviews

• Gain interesting insights to computer systems
 - We can publish the paper together
 - Will be useful to your career

• You will have a good basis for other courses
Downside

- This is a *bleeding edge and tough* course
 - Each topic needs you to spend a lot of time
 - You have two exams and four coding intensive labs

- Sth. in the course will result in hair loss
 - Debugging distributed code is hard!
 - Deeply understanding papers I signed is hard!
What I do not care

- I do not care whether you attend every class
- I do not care your programming style
- I do not care whether you come to my office
- I can give you high grades as long as you show me you learned a lot and produce great results
What I care

• I care whether you deeply understand what I teach
• I care whether you ask good questions in our class
• I care whether you build a robust system
Lecture Roadmap

• Introduction
• Course Logistics
• Overview
Class Schedule

https://zoo.cs.yale.edu/classes/cs426/2017/sched

• Student presentation days:
 - Sep 25, Oct 4, Oct 23 and Nov 8
 - We need four groups

• Lecture classifications:
 - Lec 2-9: Fundamental stuff in distributed systems
 - Lec 10-14: Security and privacy in distributed systems
 - Lec 15-20: Heading off failures in distributed systems
Next Lecture

• In the lecture Sep 1, I will cover:
 - Basic network knowledge (e.g., socket)
 - The first successful decentralized messaging system
 - UseNet and gossip protocol