
YALE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

CPSC 427a: Object-Oriented Programming Handout #5
Professor M. J. Fischer September 28, 2010

Problem Set 3

Due before midnight on Wednesday, October 6, 2010.

1 Assignment Goals

1. To learn how to organize a simulation of a large system.

2. To learn about a simple model of asynchronous distributed computing.

3. To learn how to use derived classes and virtual functions.

2 Problem

We consider the consensus problem in a simple setting. The players are trying to reach
agreement on a course of action. Each player has a current preference called her choice,
which is the current value stored in her choice register. We assume a simple binary choice,
so the choice value is either 0 or 1. The players communicate with each other, and from
time to time player may change their choices. The goal is for the players to arrive at a stage
where all players are making the same choice and nobody subsequently changes her choice.
In this case, we say the players have reached consensus, and we call the common choice the
consensus value.

We assume a very primitive model of communication. A communication step consists
of a randomly chosen player (called the sender) sending a message containing her current
choice value to another randomly chosen player (called the receiver). The receiver may then
choose to change her choice, depending on the message received and her internal state. She
may also update her internal state depending on the message received.

A population of players solves the consensus problem if the following is true:

1. For all possible initial choices of the players, if the players start in their designated
initial states, the computation reaches consensus with probability 1.

2. Once consensus has been reached, no player ever changes her choice. In particular, if
all players have the same initial choice, then that choice is the consensus value.

There are many possible algorithms for reaching consensus. A particularly simple al-
gorithm is fickle. Here, whenever a player receives a message, she changes her choice if
necessary to agree with the sender. That is, she sets her choice register to the value con-
tained in the message she receives. It is easy to see that there is some sequence of message
transmissions that causes the system to reach consensus, and once consensus has been
reached, no player will change her choice. It is also easy to believe that it might take a very
large number of random steps to reach consensus.

The algorithm, follow the crowd, seems to be a big improvement. Here, each player has
a 1-bit state register in which she saves the last message received. She changes her choice



2 Problem Set 3

only when she gets two messages in a row that both disagree with her current choice. Thus,
she waits until she gets a sense of the crowd before deciding to follow. We assume that all
players start with 0 in their state registers.

The purpose of this assignment is to simulate the two algorithms fickle and follow
the crowd to determine how long each takes on average to reach consensus. Assume a
population of numPlayers many players. An experiment for a particular algorithm consists
of numTrials runs of the algorithm. Each run begins with numPlayers/2 players choosing
1 and the remaining players choosing 0. Random communication steps are generated and
applied until consensus is reached, at which point the run ends. For each step, a sender is
selected uniformly at random from the set of all players, and a receiver is selected uniformly
at random from the remaining players (other than the sender). The receiver’s choice and
state are updated according to the rules of the selected algorithm. Note that in both of
these algorithms, no further changes of choice are possible once consensus has been reached.
The result of the experiment is the number of steps taken to reach consensus, averaged over
the runs in the experiment.

The three parameters of interest for an experiment are the algorithm being used, the
number of runs in the experiment (numTrials), and the population size (numPlayers. Once
your program is working, you should use it to explore the parameter space. This means
that you should run experiments with many different combinations of these parameters so
as to give one a pretty good idea of the performance characteristics of the two algorithms.

Increasing numTrials will reduce the variance in the average run time. This is not a
statistic course, and I am not going to ask you to do a confidence analysis. Rather, you
may take numTrials to be 100 in your experiments (but it should still be a parameter to
your program).

Increasing the population size numPlayers will cause a big increase in run time. You
may terminate your experiments once the run time grows to more than a few seconds. This
may come rather quickly with fickle, but that is for you to find out.

3 Program Notes

For ease of testing, your executable program should be called agree and should take up
to four command line arguments: The name of the algorithm to run (either fickle or
crowd), numPlayers, numTrials, and seed, where seed is the seed to be used for the pseu-
dorandom number generator used to choose the sender and receiver at each step. Missing
parameters should use default values of fickle for the algorithm, 10 for numPlayers, 100
for numTrials, and the result of time(0) for the seed. Parameters can only be missing
from the right end of the command line, so if the command has two arguments, for example,
then the missing arguments are numTrials and seed.

The code should be modular and structured into natural well-defined classes of small to
modest size. In particular, you should define a base class Player to represent the player.
This class should have derived classes Fickle and Crowd to represent the two different kinds
of players – those that use the fickle algorithm and those that use the follow the crowd
algorithm. The function that updates the receiver’s choice and state registers (perhaps
called receive()) should be virtual in class Player and be defined appropriately in classes
Fickle and Crowd. You will need several other classes as well. You may use the various
demo programs such as BarGraph and problem set solutions as guides for how to structure
a program of modest complexity such as this.



Handout #5—September 28, 2010 3

4 Deliverables

You should submit this assignment using the submit script that you will find in
/c/cs427/bin/ on the Zoo. Remember to submit the following items:

1. Source code and header files.

2. A makefile and any other files necessary to build your project. (If you’re using
Eclipse with the default settings, the makefiles will be found in the directory Debug.)

3. Test programs, output, and methodology that you used to test the correctness of your
program. For example, it is easy to see that, with a population size of 2, fickle will
reach consensus in exactly one step, so if your program gives an answer different from
1.0 in that case, it has a bug that must be fixed.

4. The data from the experiments you ran in the form of a csv file, where each row con-
tains four comma-separated fields: The algorithm name (enclosed in double quotes),
numPlayers, numTrials, and the computed average number of steps as a fixed point
decimal number.

5. A human-readable summary of the data in whatever form you choose, perhaps graphs
comparing the two algorithms for different population sizes, or a textual description
of what you can conclude from examining the data. Graphs can be produced easily
from a csv file using OpenOffice (available on the Zoo) or other spreadsheet program.

6. The scripts or other programs that you used to run the experiments. It is perfectly
acceptable (and probably easier) to write a second command that runs the experiments
directly and generates the csv file automatically instead of calling the command agree
repeatedly with different arguments.

7. A brief report named report.txt (or any other common format such as .pdf) de-
scribing the design choices you made in implementing the required code extensions.
You can also put any other information here that the TA should know about your
program.


	Assignment Goals
	Problem
	Program Notes
	Deliverables

