YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 427a: Object-Oriented Programming
Professor M. J. Fischer

Handout #9
December 1, 2010

Study Guide to Exam 2

For the exam, you are responsible for everything covered by exam 1 (see Study Guide to

Exam 1) as well as the following materials covered since that exam: the

contents of lectures

12-22 and corresponding class demos, the concepts used in problem set 4, and the entire

textbook (Chapters 1-18) except for the following sections:
e Omit section 8.4 (event traces)
e Omit chapter 11 (modules and makefiles)

e Omit section 16.6 (virtual inheritance)

Below is an index to the lecture notes. It lists all of the sections, subsections, and slide

titles from lectures 12-22.

33 Interacting Classes and UML (cont.) [lecture 12]

e Accessing B in A’s methods

e “Law” of Consistency/Encapsulation
e “Law” of Demeter

e “Law” of Demeter

34 Design Exercise: Family Datebook [lecture 12]

e Design Exercise: FamilyDatebook

35 Model-Viewer-Controller Paradigm [lecture 12]

e Model-Viewer-Controller design paradigm

36 Demo: Stopwatch [lecture 12]

e Realtime measurements

37 Demo: Stopwatch [lecture 13]

e Realtime measurements

e HirezTime class

e HirezTime class structure
e StopWatch class


http://zoo.cs.yale.edu/classes/cs427/2010a/handouts/ho06.pdf
http://zoo.cs.yale.edu/classes/cs427/2010a/handouts/ho06.pdf

38 Demo: Hangman Game [lecture 13]

38.1 Game Rules

e Hangman game

38.2 Code Design

e Overall design

e Use cases

e Code structure: Model

e Code structure: Viewer and controller
e Class Game

38.3 Storage Management

Storage management13 e String store

38.4 Refactored Game

e Refactored hangman game

e Flex arrays

e Flex array implementation issues
e String store limitation

39 Demo: Hangman Game (cont.) [lecture 14]

39.1 Refactored Game

e Refactored hangman game

e Flex arrays

e Flex array implementation issues
e String store limitation

e Refactoring Board class

40 Coding Practices Reminders [lecture 14]

e Get and set functions
e Coping with privacy problems
e Type safety

41 Casts and Conversions [lecture 14]

e Casts in C

e Different kinds of casts
o C++ casts

e Explicit cast syntax

e Implicit casts

e Ambiguity

Study Guide to Exam 2



Handout #9—December 1, 2010
e explicit keyword

42 Operator Extensions [lecture 14]

e How to define operator extensions
e Other special cases

43 Virtue Demo [lecture 15]

e Virtual virtue
e Main virtue

44 Linear Data Structure Demo [lecture 15]

e Using polymorphism
e Interface file

e Class Linear

e Example: Stack

e Example: Queue

e Class structure

o C++ features

e #include structure

45 Templates [lecture 15]

e Template overview

e Template functions

e Specialization

e Template classes

e Compilation issues

e Template parameters
e Using template classes

46 Multiple Inheritance [lecture 16]

e What is multiple inheritance
e Object structure
e Diamond pattern

47 Handling Circularly Dependent Classes [lecture 16]

e Tightly coupled classes

e Example: List and Cell

e Circularity with #include

e What happens?

e Resolving circular dependencies



4 Study Guide to Exam 2

48 Template Example [lecture 16]

e 16-Multiple-template

e Container class hierarchy

e [tem class hierarchy

e Ordered template class

e Alternative Ordered interfaces

49 The C++ Standard Library [lecture 16]

e A bit of history

e Containers

e Common container operations
e vector<T>

50 The C++ Standard Library (cont.) [lecture 17)

e Iterators

e Iterator example

e Using iterator inside a class

e Using subscripts and size()

e Algorithms

e STL sort algorithm

e Reverse sort example

e Reverse sort example (cont.)

e pair<T1, T2>

e map<Key,Val>

e Using a map<Key,Val>

e Copying from one container to another
e Copying from one container to another — example
e string class

51 STL and Polymorphism [lecture 18]

e Derivation from STL containers

¢ Replacing authority with understanding

e T'wo kinds of derivation

e How are they the same?

e What is simple derivation good for?

e What are the problems with simple derivation?

e What is polymorphic derivation good for?

e What are the problems of polymorphic derivation?

e Contrasts between simple and polymorphic derivation
e Containment as an alternative to simple derivation

e Argument for containment

e STL container as a base class

e Can I turn an STL container into a polymorphic base class?



Handout #9—December 1, 2010

e A polymorphic base class
e Dynamic cast

52 Exceptions [lecture 18]

e Exceptions

e Exception handling

e C-style solution using status returns
e C++ exception mechanism

53 Exceptions (cont.) [ecture 19]

e C++ exception mechanism (recall)

e Throwing an exception

e Catching an exception

e What kind of object should an exception throw?
e Standard exception class

e Catching standard exceptions

e Deriving your own exception classes from std: :exception
e Multiple catch blocks

e Rethrow

e Throw restrictions

e Uncaught exceptions: Ariane 5

e Uncaught exceptions: Ariane 5 (cont.)

e Termination

54 Design Patterns [lecture 19]

e General OO principles

e What is a design pattern?

e Adaptor pattern

e Adaptor diagram

e Indirection

e Proxy pattern

e Polymorphism pattern

e Polymorphism diagram

e Controller

e Three kinds of controllers

e Bridge pattern

e Bridge diagram

e Subject-Observer or Publish-Subscribe: problem
e Subject-Observer or Publish-Subscribe: pattern
e Subject-Observer or Publish-Subscribe: diagram
e Singleton pattern

[ ]



Study Guide to Exam 2

55 Design Patterns for Flexible and Reusable

Design [lecture 20]

55.1 Software Engineering

e Reusability, Flexibility, and Maintainability
e The Waterfall Software Process

e Why a Pure Waterfall Process is Usually Not Practical
e The Spiral Process

e Advantage of OO Design

e Aspect of Reusability

e Making a Class Re-usable

e Reducing Dependency Among Classes

e Aspect of Flexibility

e Some Techniques to Achieve Flexibility

e Roadmap

e What is a Design Pattern

e UML/OMT Notation

55.2 Strategy Pattern

e Example: Duck Game

e Initial Design

e Design Change: add fly()

e Problem

e Anticipating Changes

e Handling Varying Behaviors
e Design

e Programming to implementation vs. interface/supertype
e Implementation

e Exercise

e The Strategy Pattern

e Exercise (UML diagram)

e Summary: Design Principles

56 Design Patterns for Flexible and Reusable

Design (continued) [lecture 21]

56.1 Factory Pattern

e Example: KitchenViewer Interface

e KitchenViewer Example

e Selecting Antique Style

e KitchenViewer Using Standard Inheritance

e The Abstract Factory Idea

e Abstract Factory Design Pattern Applied to KitchenViewer
e Abstract Factory Design Pattern

e Concrete and Abstract Layers



Handout #9—December 1, 2010

e Abstract Factory Application Sequence Diagram
e Potential use of this Design Pattern?
e References

56.2 Decorator Pattern

e Example: Starbuzz Coffee

e Problem

e Problem (UML diagram)

e Attempt 1

e Potential Changes

e Design idea

e Design approach 1

e Decorator design

e Decoration Delegation Process
e Decorator Class Model

e Sequence Diagram for Decorator
e Decoration Features

e Exercise

56.3 Design Pattern Classification

e Some Common Design Patterns

56.4 Observer Pattern

e Example: Weather-O-Rama

e Weather-O-Rama

e Weather-O-Rama Interface

e First Implementation

e Observer Pattern

e Observer Design Pattern

e How does Observer apply these design principles?
e Discussion

57 Graphical User Interfaces [lecture 22]

e User Interfaces

o Interfaces for C++

e Overall Structure of a GUI

e Concurrency and Events

e Event Loop

e A GUI event structure

e Interface between user and system code
¢ Binding system calls to user functions
e Polymorphic binding

e Binding through callback registration

e Callback using function pointers: GUI side



8 Study Guide to Exam 2

e Callback using function pointer: User side
e Type safety
e Signals and slots

58 The gtkmm Framework [lecture 22]

e Structure of gtkmm

e Compiling a gtkmm program
e Linking a gtkmm program

e Using a GUI

e Example: clock

e Main program



	Interacting Classes and UML (cont.) [lecture 12]
	Design Exercise: Family Datebook [lecture 12]
	Model-Viewer-Controller Paradigm [lecture 12]
	Demo: Stopwatch [lecture 12]
	Demo: Stopwatch [lecture 13]
	Demo: Hangman Game [lecture 13]
	Game Rules
	Code Design
	Storage Management
	Refactored Game

	Demo: Hangman Game (cont.) [lecture 14]
	Refactored Game

	Coding Practices Reminders [lecture 14]
	Casts and Conversions [lecture 14]
	Operator Extensions [lecture 14]
	Virtue Demo [lecture 15]
	Linear Data Structure Demo [lecture 15]
	Templates [lecture 15]
	Multiple Inheritance [lecture 16]
	Handling Circularly Dependent Classes [lecture 16]
	Template Example [lecture 16]
	The C++ Standard Library [lecture 16]
	The C++ Standard Library (cont.) [lecture 17]
	STL and Polymorphism [lecture 18]
	Exceptions [lecture 18]
	Exceptions (cont.) [lecture 19]
	Design Patterns [lecture 19]
	Design Patterns for Flexible and Reusable Design [lecture 20]
	Software Engineering
	Strategy Pattern

	Design Patterns for Flexible and Reusable Design (continued) [lecture 21]
	Factory Pattern
	Decorator Pattern
	Design Pattern Classification
	Observer Pattern

	Graphical User Interfaces [lecture 22]
	The gtkmm Framework  [lecture 22]

