
Outline IO Demos Classes Functions and Methods

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 5
September 16, 2010

CPSC 427a 1/16

Outline IO Demos Classes Functions and Methods

IO Demos

Introduction to Classes

Functions and Methods
Parameters
Choosing Parameter Types

CPSC 427a 2/16

Outline IO Demos Classes Functions and Methods

IO Demos

CPSC 427a 3/16

Outline IO Demos Classes Functions and Methods

Handling data errors and end of file

Section 3.7 of the textbook contains a demo program that
illustrates how to handle data errors and end of file using C++ I/O.
It has three parts that illustrate

I How to use get() to read text lines from a file.

I How to use getline() to do the same thing.

I How to read numbers from a file.

See 05-IOdemo.

CPSC 427a 4/16

http://zoo.cs.yale.edu/classes/cs427/2010a/lectures/05-IOdemo

Outline IO Demos Classes Functions and Methods

How to write a test program

The 05-IOdemo was written in C-style using three global functions:
use get(), use getline(), and use nums().

I rewrote the demo

I to eliminate the use of underscores in multipart names;

I to illustrate the use of C++ classes as lexical containers for
gathering and isolating related code.

Here, each test is encapsulated within its own class.

The only responsibility of main() is to process the command line
arguments and initiate the tests.

See 05-IOdemo-new.

CPSC 427a 5/16

http://zoo.cs.yale.edu/classes/cs427/2010a/lectures/05-IOdemo-new

Outline IO Demos Classes Functions and Methods

Introduction to Classes

(Textbook, Chapter 4)

CPSC 427a 6/16

Outline IO Demos Classes Functions and Methods

Classes, visibility, functions, inline

We covered much of the material from sections 4.1 and 4.2 in
lectures 2 and 3.

The textbook covers it in greater depth, so be sure to also read the
book.

CPSC 427a 7/16

Outline IO Demos Classes Functions and Methods

Stack example

Section 4.3 presents a non-trivial object-oriented design for a
bracket-matching program using a stack.

As with the insertion sort demo, it is written twice, once in C and
once in C++.

Both versions have two modules: one for token and one for stack.

Note how struct in the C code becomes class in the C++
version.

Note also how the functions analyze() and mismatch() moved
from main.c to a new class Brackets in the C++ version.

CPSC 427a 8/16

Outline IO Demos Classes Functions and Methods

Functions and Methods

CPSC 427a 9/16

Outline IO Demos Classes Functions and Methods

Parameters

Call by value

Like C, C++ passes explicit parameters by value.

void f(int y) { ... y=4; ... };
...
int x=3;
f(x);

I x and y are independent variables.

I y is created when f is called and destroyed when it returns.

I At the call, the value of x (3) is used to initialize y.

I The assignment y=4; inside of f has no effect on x.

CPSC 427a 10/16

Outline IO Demos Classes Functions and Methods

Parameters

Call by pointer
Like C, pointer values (which I call reference values) are the things
that can be stored in pointer variables.
Also like C, pointers can be passed as arguments to functions with
corresponding pointer parameters.

void g(int* p) { ... (*p)=4; ... };
...
int x=3;
g(&x);

I p is created when g is called and destroyed when it returns.

I At the call, the value of &x (which is a reference value) is
used to initialize p.

I The assignment (*p)=4; inside of g changes the value of x.

CPSC 427a 11/16

Outline IO Demos Classes Functions and Methods

Parameters

Call by reference

C++ has a new kind of parameter called a reference parameter.

void g(int& p) { ... p=4; ... };
...
int x=3;
g(x);

I This does same thing as previous example; namely, p=4;
changes the value of x.

I Within the body of g, p is a synonym for x.

CPSC 427a 12/16

Outline IO Demos Classes Functions and Methods

Parameters

I/O uses reference parameters

I The first argument to << has type ostream&.

I cout << x << y; is same as (cout << x) << y;.

I << returns a reference to its first argument, so this is also the
same as

cout << x;
cout << y;

CPSC 427a 13/16

Outline IO Demos Classes Functions and Methods

Choosing Parameter Types

How should one choose the parameter type?

Parameters are used for two main purposes:

I To send data to a function.

I To receive data from a function.

CPSC 427a 14/16

Outline IO Demos Classes Functions and Methods

Choosing Parameter Types

Sending data to a function: call by value

For sending data to a function, call by value copies the data
whereas call by pointer or reference copies only an address.

If the data object is large, call by value is expensive of both time
and space and should be avoided.

If the data object is small (eg., an int or double), call by value is
cheaper since it avoids the indirection of a reference.

Call by value protects the caller’s data from being inadvertantly
changed.

CPSC 427a 15/16

Outline IO Demos Classes Functions and Methods

Choosing Parameter Types

Sending data to a function: call by reference or pointer

Call by reference or pointer allows the caller’s data to be changed.
Use const to protect the caller’s data from inadvertane change.

Ex: int f(const int& x) or int g(const int* xp).

Prefer call by reference to call by pointer for input parameters.

Ex: f(234) works but g(&234) does not.

Reason: 234 is not a variable and hence can not be the target of a
pointer.
(The reason f(234) does work is a bit subtle and will be
explained later.)

CPSC 427a 16/16

	Outline
	IO Demos
	Introduction to Classes
	Functions and Methods
	Parameters
	Choosing Parameter Types

