
Outline BarGraph Demo Storage Managemet Bells and Whistles

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 8
September 28, 2010

CPSC 427a 1/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

BarGraph Demo
graph.hpp
graph.cpp
row.hpp
row.cpp
rowNest.hpp

Storage Managemet

Bells and Whistles

CPSC 427a 2/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

Bar Graph Demo

We look at the Bar Graph demo from

Chapter 8 of the textbook.

CPSC 427a 3/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

graph.hpp

class Graph {
private:
Row* bar[BARS]; // List of bars (aggregation)
void insert(char* name, int score);

public:
Graph (istream& infile);
~Graph();
ostream& print (ostream& out);
// Static functions are called without a class instance
static void instructions() {
cout << "Put input files in same directory "

"as the executable code.\n";
}

};
inline ostream& operator<<(ostream& out, Graph& G) {

return G.print(out);
}

CPSC 427a 4/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

graph.hpp

Notes: graph.hpp

I A Graph consists of an array of pointers to bars.

I We say that it aggregates the bars because they are
associated with the Graph but are not contained within it.

I The bars must be allocated when the Graph is created and
deallocated when the Graph is destroyed. This is done with
constructors and destructors.

I The only constructor builds a Graph by reading an open
istream.

I The method insert is used by the constructor. Hence it is
declared private. It computes which bar an exam score
belongs to and then puts it there.

I instructions is a static method. It is called using
Graph::instructions().

CPSC 427a 5/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

graph.cpp

Graph::Graph(istream& infile) {
char initials[4];
int score;

// Create bars
for (int k=0; k<BARS; ++k) bar[k] = new Row(k);

// Fill bars from input stream
for (;;) {
infile >> ws; // Skip leading whitespace before get.
infile.get(initials, 4, ’ ’); // Safe read.
if (infile.eof()) break;
infile >> score; // No need for ws before >> num.
insert (initials, score); // *** POTENTIAL INFINITE LOOP

}
}

CPSC 427a 6/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

graph.cpp

Notes: graph.cpp

This implements four functions.

I Graph() first creates 11 bars and links them to the spine
bar[]. This forms a 2D array.

I Graph() next reads the scores and fills the graph.

I ws skips over leading whitespace.

I get(initials, 4, ’ ’) is a safe way to read initials.

I The destructor ~Graph() deletes the 11 bars.

I insert() divides the scores 0. . . 99 into 10 intervals.

I print() delegates the printing of each bar to Row::print().

CPSC 427a 7/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

row.hpp

Private class for use by Row.
Note friend declaration and private constructor.

class Cell
{
friend class Row;
private:
Item* data; // Pointer to one data Item (Aggregation)
Cell* next; // Pointer to next cell in row (Association)

Cell (char* d, int s, Cell* nx) {
data = new Item(d, s);
next = nx;

}
~Cell (){ delete data; cerr <<" Deleting Cell " <<"\n"; }

};

CPSC 427a 8/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

row.hpp

Public class represents one bar of the bar graph

class Row { // Interface class for one bar of the bar graph.
private:
char label[10]; // Row header label
Cell* head; // Pointer to first cell of row

public:
Row (int n);
~Row ();
void insert (char* name, int score); // delegation
ostream& print (ostream& os);

};

CPSC 427a 9/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

row.hpp

Notes: row.hpp

A Row is a list of Item. It is implemented by a linked list of Cell.

I The Cell class is private to Row. Nothing but its name is
visible from the outside.

I friend class Row allows Row functions to access the private
parts of Cell.

I Since all constructors of Cell are private, any attempt to
allocate a Row from outside will fail.

I Each Cell is initialized when it is created.

I Row::head points to the first cell of the linked list.

CPSC 427a 10/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

row.cpp

Notes: row.cpp

I Row k is labeled by the length 9 string “k0..k9: ”. E.g.,
k = 4 ⇒ label is “40..49: ”.

I Label is produced by a safe copy and modify trick:

strcpy(label, " 0.. 9: ");
label[0] = label[4] = ’0’+ rowNum;

I ’0’+rowNum converts an integer in [0..9] to the corresponding
ASCII digit.

I Assignment in C++ returns the L-value of its left operand. In
C, it returns the R-value of its right operand.

I Cell created and inserted into linked list in one line!

CPSC 427a 11/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

rowNest.hpp

Nested classes: rowNest.hpp

Alternative to Row.

Puts entire Cell class definition inside of class Row.

Now Cell is private in Row, but everything inside of class Cell is
public.

This obviates the need for Cell to grant friendship toRow and also
completely hides Cell—even the name is hidden.

Interface is same, so can substitute
#include "rowNest.hpp"

for
#include "row.hpp"

in graph.hpp and everything still works!

CPSC 427a 12/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

Storage management

CPSC 427a 13/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

Storage classes

C++ supports three different storage classes.

1. auto objects are created by variable and parameter
declarations. (This is the default.)

2. static objects are created and initialized at load time and
exist until program termination.

3. new creates dynamic objects. The exist until explicitly
destroyed by delete or the program terminates.

CPSC 427a 14/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

Assignment and copying

The assignment operator = is implicitly defined for all types.

I b=a does a shallow copy from a to b.

I Shallow copy on objects means to copy all data members from
one object to the other.

I Call-by-value uses assignment to copy actual argument to
function parameter.

I If object contains pointer data members, the pointer is copied
but not the object it points to. This results in
aliasing—multiple pointers to the same object.

CPSC 427a 15/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

Static data members

A static class variable must be declared and defined.

I A static class member is declared by preceding the member
declaration by the qualifier static.

I A static class member is defined by having it appear in global
context with an initializer but without static.

I Must be defined only once.

Example
In mypack.hpp file, inside class definition:
class MyPack {
static int instances; // count # instantiations

In mypack.cpp file:
int MyPack::instances = 0;

CPSC 427a 16/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

Static function members

Function members can also be declared static.

I As with static variables, the are declared inside class by
prefixing static.

I They may be defined either inside the class (as inline
functions) or outside the class.

I If defined outside the class, the :: prefix must be used and
the word static omitted.

CPSC 427a 17/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

Five common kinds of failures

1. Memory leak—Dynamic storage that is no longer accessible
but has not been deallocated.

2. Amnesia—Storage values that mysteriously disapper.

3. Bus error—Program crashes because of an attempt to access
non-existant memory.

4. Segmentation fault—Program crashes because of an
attempt to access memory not allocated to your process.

5. Waiting for eternity—Program is in a permanent wait state
or an infinite loop.

Read the textbook for examples of how these happen and what to
do about them.

CPSC 427a 18/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

Bells and whistles

CPSC 427a 19/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

Optional parameters

The same name can be used to name several different member
functions if the signatures (types and/or number of parameters)
are diffent. This is called overloading.

Optional parameters are a shorthand way to declare overloading.

Example
int myfun(double x, int n=1) { ... }
This declaresdefines two methods:
int myfun(double x) {...}
int myfun(double x, int n) {...}

The body of the definition of both is the same.
If called with one argument, the second parameter is set to 1.

CPSC 427a 20/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

const

const declares a variable (L-value) to be readonly.

const int x;
int y;
const int* p;
int* q;

p = &x; // okay
p = &y; // okay
q = &x; // not okay -- discards const
q = &y; // okay

CPSC 427a 21/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

const implicit argument

const should be used for member functions that do not change
data members.

class MyPack {
private:

int count;
public:

// a get function
int getCount() const { return count; }

...
};

CPSC 427a 22/23

Outline BarGraph Demo Storage Managemet Bells and Whistles

Operator extensions

Operators are shorthand for functions.

Example: <= refers to the function operator <=().

Operators can be overloaded just like functions.

class MyObj {
int count;
...
bool operator <=(MyObj& other) const {

return count <= other.count; }
};

Now can write if (a <= b) ... where a and b are of type
MyObj.

CPSC 427a 23/23

	Outline
	BarGraph Demo
	graph.hpp
	graph.cpp
	row.hpp
	row.cpp
	rowNest.hpp

	Storage Managemet
	Bells and Whistles

