
Outline Hangman Coding Casts and Conversions Operator Extensions

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 14
October 26, 2010

CPSC 427a 1/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Demo: Hangman Game (cont.)
Refactored Game

Coding Practices Reminders

Casts and Conversions

Operator Extensions

CPSC 427a 2/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Demo: Hangman Game (cont.)

CPSC 427a 3/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Refactored Game

Refactored Game

CPSC 427a 4/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Refactored Game

Refactored hangman game

Demo 11-Hangman-full extends 10-Hangman in three respects:

1. It removes the fixed limitation on the vocabulary size.

2. It removes the fixed limitation on the string store size.

3. It more clearly separates the model of Board from the
viewer/controller.

We’ll examine each of these in detail.

CPSC 427a 5/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Refactored Game

Flex arrays

A FlexArray is a growable array of elements of type T.

Whenever the array is full, private method grow() is called to
increase the storage allocation.

grow() allocates a new array of double the size of the original and
copies the data from the original into it (using memcpy()).

Note: After grow(), array is 1/2 full.

By doubling the size, the amortized time is O(n) for n items.

CPSC 427a 6/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Refactored Game

Flex array implementation issues

Element type: A general-purpose FlexArray should allow arrays
of arbitrary element type T.

If only one type is needed, we can instantiate T using typedef.
Example: typedef int T; defines T as synonym for int.

C++ templates allow for multiple instantiations.

Class types: If T is a class type, then its default constructor and
destructor are called whenever the array grows.

They must both be designed so that this does not violate the
intended semantics.

This problem does not occur with numeric or pointer flexarrays.

CPSC 427a 7/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Refactored Game

String store limitation

Can’t use FlexArray to implement StringStore since pointers
to strings would change after grow().

Instead, when one StringStore fills up, start another.

Only really want another storage pool, not another StringStore
object.

Eacn new Pool is linked to the previous one, enabling all pools to
be deleted by ~StringStore().

CPSC 427a 8/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Refactored Game

Refactoring Board class

Old design for Board contained the board model, the board display
functions, and the user-interaction code.

New design puts all user interaction into a derived class Player.

This makes a clean separation between the model (Board) and the
controller (Player).

The viewer functionality is still distributed between the two.

What are the pros and cons of this distribution?

CPSC 427a 9/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Coding Practices Reminders

CPSC 427a 10/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Get and set functions
What’s wrong with the following code?

class C {
private:

int cost;
public:

int getCost() const { return cost; }
void setCost(int n) { cost = n; }
...

}

Rule: Don’t use set functions!

(As with all rules, there are sometimes exceptions, but they are
rare.)

CPSC 427a 11/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Coping with privacy problems

Privacy violations usually mean that an action is being taken in the
wrong class.

If a function in class B wants to manipulate variables in class A, it
should delegate the operation to an appropriate function in A.

CPSC 427a 12/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Type safety

What’s wrong with the following code?

// void* return to make function generic
void* pop();

Reliable programming comes through checks and balances.
Types provide important protections in C++.
void* and certain kinds of casts circumvent the type system.

Rule: Don’t bypass the type system!

CPSC 427a 13/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Casts and Conversions

CPSC 427a 14/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Casts in C

A C cast changes an expression of one type into another.

Examples:
int x;
unsigned u;
double d;
int* p;

(double)x; // type double; preserves semantics
(int)u; // type unsigned; possible loss of information
(unsigned)d; // type unsigned; big loss of information
(long int)p; // type long int; violates semantics
(double*)p; // preserves pointerness but violates semantics

CPSC 427a 15/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Different kinds of casts

C uses the same syntax for different kinds of casts.

Value casts convert from one representation to another, partially
preserving semantics. Often called conversions.

I (double)x converts integer x to equivalent
double floating point representation.

I (short int)x converts integer x to equivalent
short int, if the integer falls within the range
of a short int.

Pointer casts leave representation alone but change interpretation
of pointer.

I (double*)p treats bits at destination of p as
the representation of a double.

CPSC 427a 16/24



Outline Hangman Coding Casts and Conversions Operator Extensions

C++ casts

C++ has four kinds of casts.

1. Static cast includes value casts of C. Tries to preserve
semantics, but not always safe. Applied at compile time.

2. Dynamic cast Applies only to pointers and references to
objects. Preserves semantics. Applied at run time.

3. Reinterpret cast is like the C pointer cast. Ignores semantics.
Applied at compile time.

4. Const cast Allows const restriction to be overridden. Applied
at compile time.

CPSC 427a 17/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Explicit cast syntax

C++ supports three syntax patterns for explicit casts.

1. C-style: (double)p.

2. Functional notation: double(x); myObject(10);.
(Note the similarity to a constructor call.)

3. Cast notation:
int x; myBase* b; const int c;

I static cast<double>(x);
I dynamic cast<myDerived*>(b);
I reinterpret cast<int>(p);
I const cast<int>(c);

CPSC 427a 18/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Implicit casts
General rule for implicit casts: If a type A expression appears in a
context where a type B expression is needed, use a semantically
safe cast to convert from A to B.

Examples:

I Assignment: int x; double d; x=d; d=x;

I Pointer assignment:
class A { ... };
class B : public A { ... };
A* ap; B* bp; ap = bp;

I Initialization:
A a=x; converts x to an A, then copies.

I Construction:
A a(x); calls A constructor, possibly casting x.

CPSC 427a 19/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Ambiguity

Can be more than one way to cast from B to A.
class B;
class A { public:
A(){}
A(B& b) { cout<< "constructed A from B\n"; }

};
class B { public:
A a;
operator A() { cout<<"casting B to A\n"; return a; }

};
int main() {
A a; B b;
a=b;

}
error: conversion from ’B’ to ’const A’ is ambiguous

CPSC 427a 20/24



Outline Hangman Coding Casts and Conversions Operator Extensions

explicit keyword

Not always desirable for constructor to be called implicitly.

Use explicit keyword to inhibit implicit calls.

Previous example compiles fine with use of explicit:
class B;
class A {
public
A(){}
explicit A(B& b) { cout<< "constructed A from B\n"; }

};
...

Question: Why was an explicit definition of the default constructor
not needed?

CPSC 427a 21/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Operator Extensions

CPSC 427a 22/24



Outline Hangman Coding Casts and Conversions Operator Extensions

How to define operator extensions

Unary operator op is shorthand for operator op ().

Binary operator op is shorthand for operator op (T arg2).

Some exceptions: Pre-increment and post-increment.

To define meaning of ++x on type T, define operator ++().

To define meaning of x++ on type T, define operator ++(int) (a
function of one argument). The argument is ignored.

CPSC 427a 23/24



Outline Hangman Coding Casts and Conversions Operator Extensions

Other special cases

Some special cases.

I Subscript: T& operator [](S index).

I Arrow: X* operator ->() returns pointer to a class X to
which the selector is then applied.

I Function call; T2 operator ()(arg list).

I Cast: operator T() defines a cast to type T.

Can also extend the new, delete, and , (comma) operators.

CPSC 427a 24/24


	Outline
	Demo: Hangman Game (cont.)
	Refactored Game

	Coding Practices Reminders
	Casts and Conversions
	Operator Extensions

