
Outline Exceptions (cont.) Design Patterns

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 19
November 11, 2010

CPSC 427a 1/34

Outline Exceptions (cont.) Design Patterns

Exceptions (cont.)

Design Patterns

CPSC 427a 2/34

Outline Exceptions (cont.) Design Patterns

Exceptions (cont.)

CPSC 427a 3/34

Outline Exceptions (cont.) Design Patterns

C++ exception mechanism (recall)

C++ exception mechanism is a means for a low-level routine to
report an exception directly to a higher-level routine.

This separates exception-handling code from normal processing
code.

An exception is reported using the keyword throw.

An exception is handled in a catch block.

Each routine in the chain between the reporter and the handler is
exited cleanly, with all destructors called as expected.

CPSC 427a 4/34

Outline Exceptions (cont.) Design Patterns

Throwing an exception

throw is followed by an exception value.

Exceptions are usually objects of a user-defined exception type.

Example:
throw AgeError("Age can’t be negative");

Exception class definition:
class AgeError {
string msg;

public:
AgeError(string s) : msg(s) {}
ostream& printError(ostream& out) const { return out<< msg; }

};

CPSC 427a 5/34

Outline Exceptions (cont.) Design Patterns

Catching an exception

A try region defines a section of code to be monitored for
exceptions.
Immediately following are catch blocks for handling the
exceptions.

try {
... //run some code

}
catch (AgeError aerr) {

// report error
cout<< "Age error: ";
aerr.printError(cout)<< cout;
// ... recover or abort

}

CPSC 427a 6/34

Outline Exceptions (cont.) Design Patterns

What kind of object should an exception throw?

catch filters the kinds of exceptions it will catch according to the
type of object thrown.

For this reason, each kind of exception should throw it’s own type
of object.

That way, an exception handler appropriate to that kind of
exception can catch it and process it appropriately.

While it may be tempting to throw a string that describes the error
condition, it is difficult to process such an object except by printing
it out and aborting (like fatal()).

Properly used, exceptions are much more powerful than that.

CPSC 427a 7/34

Outline Exceptions (cont.) Design Patterns

Standard exception class

The standard C++ library provides a polymorphic base class
std::exception from which all exceptions thrown by components
of the C++ Standard library are derived.

These are:

exception description
bad alloc thrown by new on allocation failure
bad cast thrown by a failed dynamic cast
bad exception thrown when an exception type doesn’t

match any catch
bad typeid thrown by typeid
ios base::failure thrown by functions in the iostream

library

(from http://www.cplusplus.com/doc/tutorial/exceptions/)

CPSC 427a 8/34

http://www.cplusplus.com/doc/tutorial/exceptions/

Outline Exceptions (cont.) Design Patterns

Catching standard exceptions

Class std::exception contains a virtual function

const char* what() const;

that is overridden in each derived exception class to provide a
meaningful error message.

Because the base class is polymorphic, it is possible to write a
single catch handler that will catch all derived exception objects.

Example:
catch (exception& e)

{
cerr << "exception caught: " << e.what() << endl;

}

CPSC 427a 9/34

Outline Exceptions (cont.) Design Patterns

Deriving your own exception classes from std::exception
#include <iostream>
#include <exception>
using namespace std;
class myexception: public exception {
virtual const char* what() const throw()
{ return "My exception happened"; }

} myex; // declares class and instantiates it
int main () {

try {
throw myex;

}
catch (exception& e) {
cout << e.what() << endl;

}
return 0;

}

CPSC 427a 10/34

Outline Exceptions (cont.) Design Patterns

Multiple catch blocks

I Can have multiple catch blocks to catch different classes of
exceptions.

I They are tried in order, so the more specific should come
before the more general.

I Can have a “catch-all” block catch (...) that catches all
exceptions. (This should be placed last.)

CPSC 427a 11/34

Outline Exceptions (cont.) Design Patterns

Rethrow

A catch block can do some processing and then optionally
rethrow the exception or throw a new exception.

I One exception can cause multiple catch blocks to execute.

I To rethrow the same exception, use throw; with no
argument.

I To throw a new exception, use throw as usual with an
argument.

Note: Rethrowing the current exception is not the same as a new
throw with the same exception object.

CPSC 427a 12/34

Outline Exceptions (cont.) Design Patterns

Throw restrictions

It is possible to specify that a function can only throw certain
kinds of exceptions (or none at all).

This “feature” is regarded as a bad idea because the current
semantics are not what one would expect.

It does not prevent the exceptions from being thrown; rather, it
causes a run-time test to be inserted which calls
unexpected exception() when an exception is thrown that is
not listed in the function’s throw specifier.

CPSC 427a 13/34

Outline Exceptions (cont.) Design Patterns

Uncaught exceptions: Ariane 5

Uncaught exceptions have led to spectacular disasters.

The European Space Agency’s Ariane 5 Flight 501 was destroyed
40 seconds after takeoff (June 4, 1996). The US$1 billion
prototype rocket self-destructed due to a bug in the on-board
guidance software. [Wikipedia]

This is not about a programming error.
It is about system-engineering and design failures.
The software did what it was designed to do and what it was
agreed that it should do.

CPSC 427a 14/34

http://en.wikipedia.org/wiki/Ariane_5_Flight_501

Outline Exceptions (cont.) Design Patterns

Uncaught exceptions: Ariane 5 (cont.)
Heres a summary of the events and its import for system
engineering:

I A decision was made to leave a program running after launch,
even though its results were not needed after launch.

I An overflow error happened in that calculation,

I An exception was thrown and, by design, was not caught.

I This caused the vehicle’s active and backup inertial reference
systems to shut down automatically.

As the result of the unanticipated failure mode and a diagnostic
message erroneously treated as data, the guidance system ordered
violent attitude correction. The ensuing disintegration of the
over-stressed vehicle triggered the pyrotechnic destruction of the
launcher and its payload.

CPSC 427a 15/34

Outline Exceptions (cont.) Design Patterns

Termination

There are various conditions under which the exception-handling
mechanism can fail. Two such examples are:

I Exception not caught by any catch block.

I A destructor issues a throw during the stack-unwinding
process.

When this happens, the function terminate() is called, which
aborts the process.

This is a bad thing in production code.

Conclusion: All exceptions should be caught and dealt with
explicitly.

CPSC 427a 16/34

Outline Exceptions (cont.) Design Patterns

Design Patterns

CPSC 427a 17/34

Outline Exceptions (cont.) Design Patterns

General OO principles

1. Encapsulation Data members should be private. Public
accessing functions should be defined only when absolutely
necessary. This minimizes the ways in which one class can
depend on the representation of another.

2. Narrow interface Keep the interface (set of public functions)
as simple as possible; include only those functions that are of
direct interest to client classes. Utility functions that are used
only to implement the interface should be kept private. This
minimizes the chance for information to leak out of the class
or for a function to be used inappropriately.

3. Delegation A class that is called upon to perform a task
often delegates that task (or part of it) to one of its members
who is an expert.

CPSC 427a 18/34

Outline Exceptions (cont.) Design Patterns

What is a design pattern?

A pattern has four essential elements.1

1. A pattern name.

2. The problem, which describes when to apply the pattern.

3. The solution, which describes the elements, relations, and
responsibilities.

4. The consequences, which are the results and tradeoffs.

1Erich Gamma et al., Design Patterns, Addison-Wesley, 1995.)

CPSC 427a 19/34

Outline Exceptions (cont.) Design Patterns

Adaptor pattern

Sometimes a toolkit class is not reusable because its interface does
not match the domain-specific interface an application requires.

Solution: Define an adapter class that can add, subtract, or
override functionality, where necessary.

CPSC 427a 20/34

Outline Exceptions (cont.) Design Patterns

Adaptor diagram

There are two ways to do this; on the left is a class adapter, on the
right an object adapter.

Target

ClassAdaptor

request()

request()

Adaptee

rightAction_wrongName()

ClassAdaptor::request() {
 rightAction_wrongName();
}

Client

ObjectAdaptor::request() {
 a->rightAction_wrongName();
}

Target

ObjectAdaptor

Adaptee

rightAction_wrongName()

request()

request()

Client

Adaptee* a

CPSC 427a 21/34

Outline Exceptions (cont.) Design Patterns

Indirection

This pattern is used to decouple the application from the
implementation where an implementation depends on the interface
of some low-level device.

Goal is to make the application stable, even if the device changes.

AirlineSeat

if_seat()
reserve_seat()
free_seat()
...

Modem

dial();
receive();
send()
...

System API calls:
 open_port(int);
 dial(phonenumber);

Modem::dial(phonenumber)
{
 :: open_port(1);
 :: dial(2039821234);
}

calls calls

CPSC 427a 22/34

Outline Exceptions (cont.) Design Patterns

Proxy pattern

This pattern is like Indirection, and is used when direct access to a
component is not desired or possible.

Solution: Provide a placeholder that represents the inaccessible
component to control access to it and interact with it. The
placeholder is a local software class. Give it responsibility for
communicating with the real component.

Special cases: Device proxy, remote proxy. In Remote Proxy, the
system must communicate with an object in another address space.

CPSC 427a 23/34

Outline Exceptions (cont.) Design Patterns

Polymorphism pattern

In an application where the abstraction has more than one
implementation, define an abstract base class and one or more
subclasses.

Let the subclasses implement the abstract operations.

This decouples the implementation from the abstraction and allows
multiple implementations to be introduced, as needed.

CPSC 427a 24/34

Outline Exceptions (cont.) Design Patterns

Polymorphism diagram

UndergradStudent

register(course) { ... }

Student

register(course) =0

Alumnus

register(course) { ... }register(course) { ... }

GradStudent

CPSC 427a 25/34

Outline Exceptions (cont.) Design Patterns

Controller

A controller class takes responsibility for handling a system event.

The controller should coordinate the work that needs to be done
and keep track of the state of the interaction. It should delegate
all other work to other classes.

CPSC 427a 26/34

Outline Exceptions (cont.) Design Patterns

Three kinds of controllers

A controller class represents one of the following choices:

I The overall application, business, or organization (facade
controller).

I Something in the real world that is active that might be
involved in the task (role controller).
Example: A menu handler.

I An artificial handler of all system events involved in a given
use case (use-case controller).
Example: A retail system might have separate controllers for
BuyItem and ReturnItem.

Choose among these according to the number of events to be
handled, cohesion and coupling, and to decide how many
controllers there should be.

CPSC 427a 27/34

Outline Exceptions (cont.) Design Patterns

Bridge pattern

Bridge generalizes the Indirection pattern.

It isused when both the application class and the implementation
class are (or might be) polymorphic.

Bridge decouples the application from the polymorphic
implementation, greatly reducing the amount of code that must be
written, and making the application much easier to port to
different implementation environments.

CPSC 427a 28/34

Outline Exceptions (cont.) Design Patterns

Bridge diagram

In the diagram below, we show that there might be several kinds of
windows, and the application might be implemented on two
operating systems. The bridge provides a uniform pattern for doing
the job.

ImageWindow

Window

DialogWindow

draw_box()

draw_text()
draw_rectangle()

draw_border()

WIP : WindowImp*

XWindowImp WindowNTImp

WindowImplementation

imp_draw_text()
imp_draw_rectangle()

=0
=0

imp_draw_text();
imp_draw_rectangle();

imp_draw_text();
imp_draw_rectangle();

DialogWindow::draw_box() {
 draw_rectangle();
 draw_text();
}

ImageWindow::draw_border() {
 draw_rectangle();
}

Window::draw_text() {
 WIP->draw_text();
}

CPSC 427a 29/34

Outline Exceptions (cont.) Design Patterns

Subject-Observer or Publish-Subscribe: problem

Problem: Your application program has many classes and many
objects of some of those classes. You need to maintain consistency
among the objects so that when the state of one changes, its
dependents are automatically notified. You do not want to
maintain this consistency by using tight coupling among the
classes.

Example: An OO spreadsheet application contains a data object,
several presentation “views” of the data, and some graphs based
on the data. These are separate objects. But when the data
changes, the other objects should automatically change.

CPSC 427a 30/34

Outline Exceptions (cont.) Design Patterns

Subject-Observer or Publish-Subscribe: pattern

Call the SpreadsheetData class the subject; the views and graphs
are the observers.

The basic Spreadsheet class composes an observer list and provides
an interface for attaching and detaching Observer objects.

Observer objects may be added to this list, as needed, and all will
be notified when the subject (SpreadsheetData) changes.

We derive a concrete subject class (SpreadsheetData) from the
Spreadsheet class. It will communicate with the observers through
a get state() function, that returns a copy of its state.

CPSC 427a 31/34

Outline Exceptions (cont.) Design Patterns

Subject-Observer or Publish-Subscribe: diagram

Observer::update() {
 observer_state =
 SS->get_state();
}

Spreadsheet::notify() {
 OL.updateall()
}

ObserverList::updateall() {
 for all x in the list,
 x->update()
}

FullDataView

AnnualReport

BarGraph

update();

observer_state
SpreadsheetData*

attach(observer)
detach(observer)
notify()
...

ObserverList

updateall()

SpreadsheetData

+ get_state()
- subject_state

OL: Observer List
Observer

update() =0

*Spreadsheet
SS: Spreadsheet*

See textbook for more details.

CPSC 427a 32/34

Outline Exceptions (cont.) Design Patterns

Singleton pattern

Suppose you need exactly one instance of a class, and objects in all
parts of the application need a single point of access to that
instance.

Solution: A single object may be made available to all objects of
class C by making the singleton a static member of class C.

A class method can be defined that returns a reference to the
singleton if access is needed outside its defining class.

CPSC 427a 33/34

Outline Exceptions (cont.) Design Patterns

static member StringStore& StringStore::getStore(){
 if (instance==NULL) instance = new StringStore;
 return instance;
}static method

StringStore
-$ instance *
- other members...
+$ getStore() : StringStore&

Example: Suppose several parts of a program need to use a
StringStore. We might define StringStore as a singleton class.

The StringStore::put() function is made static and becomes
a global access point to the class, while maintaining full protection
for the class members.

CPSC 427a 34/34

	Outline
	Exceptions (cont.)
	Design Patterns

