
Outline Functions and Methods Simple Variables Pointers References

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 5
September 15, 2011

CPSC 427a, Lecture 5 1/35

Outline Functions and Methods Simple Variables Pointers References

Functions and Methods
Parameters
Choosing Parameter Types
The Implicit Argument

Simple Variables

Pointers

References

CPSC 427a, Lecture 5 2/35

Outline Functions and Methods Simple Variables Pointers References

Functions and Methods

CPSC 427a, Lecture 5 3/35

Outline Functions and Methods Simple Variables Pointers References

Parameters

Call by value

Like C, C++ passes explicit parameters by value.

void f(int y) { ... y=4; ... };
...
int x=3;
f(x);

I x and y are independent variables.

I y is created when f is called and destroyed when it returns.

I At the call, the value of x (=3) is used to initialize y.

I The assignment y=4; inside of f has no effect on x.

CPSC 427a, Lecture 5 4/35

Outline Functions and Methods Simple Variables Pointers References

Parameters

Call by pointer
Like C, pointer values (which I call reference values) are the
things that can be stored in pointer variables.
Also like C, references values can be passed as arguments to
functions having corresponding pointer parameters.

void g(int* p) { ... (*p)=4; ... };
...
int x=3;
g(&x);

I p is created when g is called and destroyed when it returns.

I At the call, the value of &x, a reference value, is used to
initialize p.

I The assignment (*p)=4; inside of g changes the value of x.

CPSC 427a, Lecture 5 5/35

Outline Functions and Methods Simple Variables Pointers References

Parameters

Call by reference

C++ has a new kind of parameter called a reference parameter.

void g(int& p) { ... p=4; ... };
...
int x=3;
g(x);

I This does same thing as previous example; namely, the
assignment p=4 changes the value of x.

I Within the body of g, p is a synonym for x.

I For example, &p and &x are identical reference values.

CPSC 427a, Lecture 5 6/35

Outline Functions and Methods Simple Variables Pointers References

Parameters

I/O uses reference parameters

I The first argument to << has type ostream&.

I cout << x << y; is same as (cout << x) << y;.

I << returns a reference to its first argument, so this is also the
same as

cout << x;
cout << y;

CPSC 427a, Lecture 5 7/35

Outline Functions and Methods Simple Variables Pointers References

Choosing Parameter Types

How should one choose the parameter type?

Parameters are used for two main purposes:

I To send data to a function.

I To receive data from a function.

CPSC 427a, Lecture 5 8/35

Outline Functions and Methods Simple Variables Pointers References

Choosing Parameter Types

Sending data to a function: call by value

For sending data to a function, call by value copies the data
whereas call by pointer or reference copies only an address.

I If the data object is large, call by value is expensive of both
time and space and should be avoided.

I If the data object is small (eg., an int or double), call by
value is cheaper since it avoids the indirection of a reference.

I Call by value protects the caller’s data from being
inadvertantly changed.

CPSC 427a, Lecture 5 9/35

Outline Functions and Methods Simple Variables Pointers References

Choosing Parameter Types

Sending data to a function: call by reference or pointer

Call by reference or pointer allows the caller’s data to be changed.
Use const to protect the caller’s data from inadvertane change.

Ex: int f(const int& x) or int g(const int* xp).

Prefer call by reference to call by pointer for input parameters.

Ex: f(234) works but g(&234) does not.

Reason: 234 is not a variable and hence can not be the target of a
pointer.
(The reason f(234) does work is a bit subtle and will be
explained later.)

CPSC 427a, Lecture 5 10/35

Outline Functions and Methods Simple Variables Pointers References

Choosing Parameter Types

Receiving data from a function

An output parameter is expected to be changed by the function.

Both call by reference and call by pointer work.

Call by reference is generally preferred since it avoids the need for
the caller to place an ampersand in front of the output variable.

Declaration: int f(int& x) or int g(int* xp).

Call: f(result) or g(&result).

CPSC 427a, Lecture 5 11/35

Outline Functions and Methods Simple Variables Pointers References

The Implicit Argument

The implicit argument

Every call to a class member function has an implicit argument,
which is the object written before the dot in the function call.

class MyExample {
private:

int count; // data member
public:

void advance(int n) { count += n; }
...

};
...
MyExample ex;
ex.advance(3);

Increments ex.count by 3.

CPSC 427a, Lecture 5 12/35

Outline Functions and Methods Simple Variables Pointers References

The Implicit Argument

this

The implicit argument is passed by pointer.

In the call ex.advance(3), the implicit argument is ex, and a
pointer to ex is passed to advance().

The implicit argument can be referenced directly from within a
member function using the keyword this.

Within the definition of advance(), count and this->count are
synonymous.

CPSC 427a, Lecture 5 13/35

Outline Functions and Methods Simple Variables Pointers References

Simple variables

CPSC 427a, Lecture 5 14/35

Outline Functions and Methods Simple Variables Pointers References

L-values and R-values

Programming language designers have long been bothered by the
asymmetry of assignment.

x = 3 is a legal assignment statement.
3 = x is not legal.

Expressions are treated differently depending on whether they
appear on the left or right sides of an assignment statement.

Something that can appear on the left is called an L-value.

Something that can appear on the right is called an R-value.

Intuitively, an L-value is the address of a storage location – some
place where a value can be stored.

An R-value is a thing that can be placed in a storage location.
R-values are sometimes called pure data values.

CPSC 427a, Lecture 5 15/35

Outline Functions and Methods Simple Variables Pointers References

Simple variable declaration

The declaration int x = 3; says several things:

1. All values that can be stored in x have type int.

2. The name x is bound (when the code is executed) to a
storage location adequate to store an int.

3. The int value 3 is initially placed in x’s storage location.

The L-value of x is the address of the storage location of x.

The R-value of x is the object of type int that is stored in x.

CPSC 427a, Lecture 5 16/35

Outline Functions and Methods Simple Variables Pointers References

Simple assignment

The assignment statement x = 3; means the following:

1. Get an L-value from the left hand side (x).

2. Get an R-value from the right hand side (3).

3. Put the R value from step 2 into the storage location whose
address was obtained from step 1.

CPSC 427a, Lecture 5 17/35

Outline Functions and Methods Simple Variables Pointers References

Automatic dereferencing
Given

int x = 3;
int y = 4;

Consider
x = y;

This is processed as before, except what does it mean to get an
R-value from y?

Whenever an L-value is presented and an R-value is needed,
automatic deferencing occurs.

This means to go the storage location specified by the presented
L-value (y) and get its R-value (4).

Then the assignment takes place as before.

CPSC 427a, Lecture 5 18/35

Outline Functions and Methods Simple Variables Pointers References

Pointers

CPSC 427a, Lecture 5 19/35

Outline Functions and Methods Simple Variables Pointers References

Pointer values

I A pointer [reference value] is a primitive object with an
associated L-value.

I The pointer itself is an R-value.

I The type of a pointer is the type of the value that can be
stored at the associated L-value, followed by *

I Example: If y is a simple integer variable, then the type of a
pointer to y is int*.

I We say the pointer references y.

CPSC 427a, Lecture 5 20/35

Outline Functions and Methods Simple Variables Pointers References

Pointer creation

I Pointers are created by applying the unary operator & to an
L-value.

I Example: If y has type int, then the expression &y is a
pointer of type int* that references y.

I More generally, if x has type T, then the expression &x yields a
pointer (R-value) of type T* that references x.

CPSC 427a, Lecture 5 21/35

Outline Functions and Methods Simple Variables Pointers References

Pointer variables

Variables into which pointers can be stored are called (not
surprisingly) pointer variables.

A pointer variable is no different from any other variable except for
the types of values that can be stored in it.

I int* q declares q to be a variable into which pointers of type
int* can be stored.

I If x is an integer variable, then the assignment q = &x
creates a pointer to x and stores it in q.

Just as we often conflate “integer” and “integer variable”, it is
easy to confuse “pointer” with “pointer variable”.

CPSC 427a, Lecture 5 22/35

Outline Functions and Methods Simple Variables Pointers References

Pointer assignment

Pointers can be assigned to pointer variables.

I If p and q are pointer variables of the same type, then p = q;
is an assignment statement.

I It has the same interpretation as any other assignment, i.e.,
fetch the (pointer) value from q and store it in p.

I Example: If q = &x as before, then after p = q, p contains a
copy of the pointer stored in q. Both of these pointers
reference the address of x.

I Note that the L-value q is dereferenced to an R-value, which
is then placed in p.

I Dereferencing does not follow the pointer.

CPSC 427a, Lecture 5 23/35

Outline Functions and Methods Simple Variables Pointers References

Following a pointer

To follow a pointer means to obtain the L-value it encapsulates.

I The basic operator for following a pointer is unary *.

I * is the inverse of &. It takes a pointer and returns its
corresponding L-value.

I If E is a pointer expression, then *E is the L-value
encapsulated by the pointer that results from evaluating E .

I If E has type T*, then the values stored in *E have type T.

I We say that E points to *E .

CPSC 427a, Lecture 5 24/35

Outline Functions and Methods Simple Variables Pointers References

Pointer example

int x = 3;
int y = 4;
int* p;
int* q;
int* r;

p = &x; // p points to x.
*p = 5; // Now x==5.
q = p; // p and q both point to x.
*q = *p + 1; // Now x==6.

Common mistake – dangling pointer
*r = x+y; // What’s wrong here?

CPSC 427a, Lecture 5 25/35

Outline Functions and Methods Simple Variables Pointers References

Pointer declaration syntax

A word of warning

int x, y; is shorthand for int x; int y; but

int* p, q; is not same as int* p, int* q.

Rather, it means int* p; int q;.

For this reason, many authors put the * next to the variable
instead of with the type name.

Spacing around the star doesn’t matter, but logically it belongs
with the type.

CPSC 427a, Lecture 5 26/35

Outline Functions and Methods Simple Variables Pointers References

References

CPSC 427a, Lecture 5 27/35

Outline Functions and Methods Simple Variables Pointers References

Reference types

Recall: Given int x, two types are associated with x: an L-value
(the reference to x) and an R-value (the type of its values).

C++ exposes this distinction through reference types and
declarators.

A reference type is any type T followed by &, i.e., T&.

A reference type is the internal type of an L-value.

Example: Given int x, the name x is bound to an L-value of type
int&, whereas the values stored in x have type int

This generalizes to arbitrary types T: If an L-value stores values of
type T, then the type of the L-value is T&.

CPSC 427a, Lecture 5 28/35

Outline Functions and Methods Simple Variables Pointers References

Reference declarators
The syntax T& can be used to declare names, but its meaning is
not what one might expect.

int x = 3; // Ordinary int variable
int& y = x; // y is an alias for x
y = 4; // Now x == 4.

The declaration must include an initializer.

The meaning of int& y = x; is that y becomes a name for the
L-value x.

Since x is simply the name of an L-value, the effect is to make y
an alias for x.

For this to work, the L-value type (int&) of x must match the
type declarator (int&) for y, as above.

CPSC 427a, Lecture 5 29/35

Outline Functions and Methods Simple Variables Pointers References

Use of named references
Named references can be used just like any other variable.

One application is to give names to otherwise unnamed storage
locations.

int axis[101]; // values along a graph axis
int& first = axis[0] ; // give name to first element
int& last = axis[100]; // give name to last element
first = -50;
last = 50;

// use p to scan through the array
int* p;
for (p=&first; p!=&last; p++) {...}

CPSC 427a, Lecture 5 30/35

Outline Functions and Methods Simple Variables Pointers References

Reference parameters

References are mainly useful for function parameters and return
values.

When used to declare a function parameter, they provide
call-by-reference semantics.

int f(int& x){...}
Within the body of f, x is an alias for the actual parameter, which
must be the L-value of an int location.

CPSC 427a, Lecture 5 31/35

Outline Functions and Methods Simple Variables Pointers References

Reference return values

Functions can also return references.

int& g(bool flag, int& x, int& y) {
if (flag) return x;
return y;

}
...
g(x<y, x, y) = x + y;

This code returns a reference to the smaller of x and y and then
sets that variable to their sum.

CPSC 427a, Lecture 5 32/35

Outline Functions and Methods Simple Variables Pointers References

Custom subscripting

Suppose you would like to use 1-based arrays instead of C++’s
0-based arrays.

We can define our own subscript function so that sub(a, k)
returns the L-value of array element a[k-1].

sub(a,k) can be used on either the left or right side of an
assignment statement, just like the built-in subscript operator.

int& sub(int a[], int k) { return a[k-1]; }
...
int mytab[20];
for (k=1; k<=20; k++)

sub(mytab, k) = k;

CPSC 427a, Lecture 5 33/35

Outline Functions and Methods Simple Variables Pointers References

Constant references

Constant reference types allow the naming of pure R-values.
const double& pi = 3.1415926535897932384626433832795;

Actually, this is little different from
const double pi = 3.1415926535897932384626433832795;

In both cases, the pure R-value is placed in a read-only variable,
and pi is bound to its L-value.

CPSC 427a, Lecture 5 34/35

Outline Functions and Methods Simple Variables Pointers References

Comparison of reference and pointer

I A reference (L-value) is the result of following a pointer.

I A pointer is only followed when explicitly requested
(by * or ->).

I A reference name is bound when it is created. Pointer
variables can be initialized at any time (unless declared to be
read-only using const).

I Once a reference is bound to an object, it cannot be changed
to refer to another object. Pointer variables can be changed
to point to another object at any time using assignment
(unless declared to be read-only).

I You cannot have NULL references. You must always be able
to assume that a reference is connected to a legitimate piece
of storage.

CPSC 427a, Lecture 5 35/35

	Outline
	Functions and Methods
	Parameters
	Choosing Parameter Types
	The Implicit Argument

	Simple Variables
	Pointers
	References

