
Outline Exceptions

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 19
November 8, 2011

CPSC 427a, Lecture 19 1/22

Outline Exceptions

Exceptions

CPSC 427a, Lecture 19 2/22

Outline Exceptions

Exceptions

CPSC 427a, Lecture 19 3/22

Outline Exceptions

Exceptions

An exception is an event that prevents normal continuation.

Exceptions may be due to program errors or data errors, but they
may also be due to external events:

I File not found.

I Insufficient permissions.

I Network failure.

I Read error.

I Out of memory error.

How to respond to different kinds of exceptions is
application-dependent.

CPSC 427a, Lecture 19 4/22

Outline Exceptions

Exception handling

When an exception occurs, a program has several options:

I Try again.

I Try something else.

I Give up.

Problem: Exceptions are often detected at a low level of the code.
Knowledge of how to respond resides at a higher level.

CPSC 427a, Lecture 19 5/22

Outline Exceptions

C-style solution using status returns

The C library functions generally report exceptions by returning
status values or error codes.

Advantages: How to handle exception is delegated to the caller.

Disadvantages:

I Every caller must handle every possible exception.

I Exception-handling code becomes intermingled with the
“normal” operation code, making program much more
difficult to comprehend.

CPSC 427a, Lecture 19 6/22

Outline Exceptions

C++ exception mechanism

C++ exception mechanism is a means for a low-level routine to
report an exception directly to a higher-level routine.

This separates exception-handling code from normal processing
code.

An exception is reported using the keyword throw.

An exception is handled in a catch block.

Each routine in the chain between the reporter and the handler is
exited cleanly, with all destructors called as expected.

CPSC 427a, Lecture 19 7/22

Outline Exceptions

Throwing an exception

throw is followed by an exception value.

Exceptions are usually objects of a user-defined exception type.

Example:
throw AgeError("Age can’t be negative");

Exception class definition:
class AgeError {
string msg;

public:
AgeError(string s) : msg(s) {}
ostream& printError(ostream& out) const { return out<< msg; }

};

CPSC 427a, Lecture 19 8/22

Outline Exceptions

Catching an exception
A try region defines a section of code to be monitored for
exceptions.
Immediately following are catch blocks for handling the
exceptions.
try {

... //run some code
}
catch (AgeError& aerr) {

// report error
cout<< "Age error: ";
aerr.printError(cout)<< cout;
// ... recover or abort

}

The catch parameter should generally be a reference parameter as
in this example.

CPSC 427a, Lecture 19 9/22

Outline Exceptions

What kind of object should an exception throw?

catch filters the kinds of exceptions it will catch according to the
type of object thrown.

For this reason, each kind of exception should throw it’s own type
of object.

That way, an exception handler appropriate to that kind of
exception can catch it and process it appropriately.

While it may be tempting to throw a string that describes the error
condition, it is difficult to process such an object except by printing
it out and aborting (like fatal()).

Properly used, exceptions are much more powerful than that.

CPSC 427a, Lecture 19 10/22

Outline Exceptions

Standard exception class

The standard C++ library provides a polymorphic base class
std::exception from which all exceptions thrown by components
of the C++ Standard library are derived.

These are:

exception description
bad alloc thrown by new on allocation failure
bad cast thrown by a failed dynamic cast
bad exception thrown when an exception type doesn’t

match any catch
bad typeid thrown by typeid
ios base::failure thrown by functions in the iostream

library

(from http://www.cplusplus.com/doc/tutorial/exceptions/)

CPSC 427a, Lecture 19 11/22

http://www.cplusplus.com/doc/tutorial/exceptions/

Outline Exceptions

Catching standard exceptions

Class std::exception contains a virtual function

const char* what() const;

that is overridden in each derived exception class to provide a
meaningful error message.

Because the base class is polymorphic, it is possible to write a
single catch handler that will catch all derived exception objects.

Example:
catch (exception& e)

{
cerr << "exception caught: " << e.what() << endl;

}

CPSC 427a, Lecture 19 12/22

Outline Exceptions

Deriving your own exception classes from std::exception
#include <iostream>
#include <exception>
using namespace std;
class myexception: public exception {
virtual const char* what() const throw()
{ return "My exception happened"; }

} myex; // declares class and instantiates it
int main () {

try {
throw myex;

}
catch (exception& e) {
cout << e.what() << endl;

}
return 0;

}

CPSC 427a, Lecture 19 13/22

Outline Exceptions

Multiple catch blocks

I Can have multiple catch blocks to catch different classes of
exceptions.

I They are tried in order, so the more specific should come
before the more general.

I Can have a “catch-all” block catch (...) that catches all
exceptions. (This should be placed last.)

CPSC 427a, Lecture 19 14/22

Outline Exceptions

Rethrow

A catch block can do some processing and then optionally
rethrow the exception or throw a new exception.

I One exception can cause multiple catch blocks to execute.

I To rethrow the same exception, use throw; with no
argument.

I To throw a new exception, use throw as usual with an
argument.

CPSC 427a, Lecture 19 15/22

Outline Exceptions

A subtle fact about rethrow

Rethrowing the current exception is not the same as throwing an
exception with the same exception object.

throw e; always copies object e to special memory using the copy
constructor for e’s class.

throw; does not make another copy of the exception object but
instead uses the copy already in special memory.

This difference becomes apparent if the copy is not identical to the
original (possible for a custom copy constructor), or if the copy
constructor has side effects (such as printing output).

CPSC 427a, Lecture 19 16/22

Outline Exceptions

Example
1 #include <iostream>

2 using namespace std;

3 class MyException {

4 public:

5 MyException() {}

6 MyException(MyException& e) {

7 cout << "Copy constructor called\n"; }

8 ~MyException() {}

9 } myex; // declares class and instantiates it

10 int main () {

11 try {

12 try { throw myex; }

13 catch (MyException& e) {

14 cout << "Exception caught by inner catch\n"; throw; }

15 }

16 catch (MyException& err) {

17 cout << "Exception caught by outer catch\n";

18 }

19 return 0;

20 }

CPSC 427a, Lecture 19 17/22

Outline Exceptions

Results

In the preceding example, the throw myex on line 12 causes a
copy, but the throw on line 14 does not.

This produces the following output:

Copy constructor called
Exception caught by inner catch
Exception caught by outer catch

CPSC 427a, Lecture 19 18/22

Outline Exceptions

Throw restrictions

It is possible to specify that a function can only throw certain
kinds of exceptions (or none at all).

This “feature” is regarded as a bad idea because the current
semantics are not what one would expect.

It does not prevent the exceptions from being thrown; rather, it
causes a run-time test to be inserted which calls
unexpected exception() when an exception is thrown that is
not listed in the function’s throw specifier.

CPSC 427a, Lecture 19 19/22

Outline Exceptions

Uncaught exceptions: Ariane 5

Uncaught exceptions have led to spectacular disasters.

The European Space Agency’s Ariane 5 Flight 501 was destroyed
40 seconds after takeoff (June 4, 1996). The US$1 billion
prototype rocket self-destructed due to a bug in the on-board
guidance software. [Wikipedia]

This is not about a programming error.
It is about system-engineering and design failures.
The software did what it was designed to do and what it was
agreed that it should do.

CPSC 427a, Lecture 19 20/22

http://en.wikipedia.org/wiki/Ariane_5_Flight_501

Outline Exceptions

Uncaught exceptions: Ariane 5 (cont.)
Heres a summary of the events and its import for system
engineering:

I A decision was made to leave a program running after launch,
even though its results were not needed after launch.

I An overflow error happened in that calculation,

I An exception was thrown and, by design, was not caught.

I This caused the vehicle’s active and backup inertial reference
systems to shut down automatically.

As the result of the unanticipated failure mode and a diagnostic
message erroneously treated as data, the guidance system ordered
violent attitude correction. The ensuing disintegration of the
over-stressed vehicle triggered the pyrotechnic destruction of the
launcher and its payload.

CPSC 427a, Lecture 19 21/22

Outline Exceptions

Termination

There are various conditions under which the exception-handling
mechanism can fail. Two such examples are:

I Exception not caught by any catch block.

I A destructor issues a throw during the stack-unwinding
process.

When this happens, the function terminate() is called, which by
default aborts the process.1

This is a bad thing in production code.

Conclusion: All exceptions should be caught and dealt with
explicitly.

1It’s behavior can be changed by the user.

CPSC 427a, Lecture 19 22/22

	Outline
	Exceptions

