
CS427a: Object-Oriented Programming
Design Patterns for Flexible and Reusable design

Michael J. Fischer
(from slides by Y. Richard Yang)

Lecture 23b
November 29, 2011

Example: Duck Game

• A startup produces a duck-pond simulation
game

• The game shows a large variety of duck
species swimming and making quacking
sounds

Initial Design

MillardDuck

display() {
 looks like a mallard
}

RedheadDuck

display() {
 looks like a redhat
}

Other types of ducks

Duck

quack()
swim()
display() = 0
// Other duck-like method

Design Change: add fly()
Duck

quack()
swim()
display() = 0
fly()
// Other duck-like method

MillardDuck

display() {
 looks like a mallard
}

RedheadDuck

display() {
 looks like a redhat
}

Other types of ducks

Problem
• Generalization may lead to

unintended behaviors:
a rubber duck is flying and
quacks

Duck

quack()
swim()
display() = 0
// Other duck-like method

RubberDuck

display() {looks like a rubber duck}
quack() { // sqeak }
fly() { // cannot fly }

MillardDuck

display() {
 looks like a mallard
}

Anticipating Changes

• Identify the aspects of your application that
may vary
– What may change?

• Anticipate that
– new types of ducks may appear and
– behaviors (quack, swimming, and flying) may

change, even change at run time (swirl flying,
circular flying, …)

Handling Varying Behaviors
• Solution: take what varies and “encapsulate”

it
– Since fly() and quack() vary across ducks, separate

these behaviors from the Duck class and create a
new set of classes to represent each behavior

super class of all ducks
Varying and run-time
changeable behaviors

Design

• Each duck object has a fly behavior

FlyWithWings

fly() {
 //
}

FlyNoWay

fly() {
 // cannot fly
}

<<interface>>
FlyBehavior

fly()

Programming to implementation vs.
interface/supertype

• Programming to an implementation
– Dog d = new Dog();
– d.bark();

• Programming to an interface/supertype
– Animal a = new Dog();
– a.makeSound();

Implementation

FlyWithWings

fly() {
 //
}

FlyNoWay

fly() {
 // cannot fly
}

<<interface>>
FlyBehavior

fly()

MallardDuck

display() {
 looks like a mallard
}

RedheadDuck

display() {
 looks like a redhat
}

Duck

quack()
swim()
display() = 0
// Other duck-like method

Exercise

• Add rocket-powered flying?

The Strategy Pattern

• Defines a set of algorithms, encapsulates each
one, and makes them interchangeable by
defining a common interface

Exercise

Summary: Design Principles

• Identify the aspects of your application that
vary and separate them from what stay the
same

• Program to an interface not implementation

• Favor composition over inheritance

Example: KitchenViewer Interface

Wall
cabinet

Counter

Floor
cabinet



Modern Classic Antique Arts & Crafts

menu

display area

styles

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

KitchenViewer Example

Modern Classic Antique Arts & Crafts

Wall cabinets Floor cabinetsCountertop

Selecting Antique Style

Modern Classic Antique Arts & Crafts

KitchenViewer Using Standard Inheritance

Kitchen

Client
renderKitchen()

FloorCabinet

ModernWallCabinet

ModernFloorCabinet AntiqueFloorCabinet

AntiqueWallCabinet

WallCabinet

Aspect of the system that
may change/vary?

: Reference direction

AntiqueKStyle
getWallCabinet()
getFloorCabinet()

The Abstract Factory Idea

KitchenStyle
getWallCabinet()
getFloorCabinet()

ModernKStyle
getWallCabinet()
getFloorCabinet()

WallCabinet FloorCabinet

AntiqueWallCabinet AntiqueFloorCabinet

FloorCabinet getFloorCabinet()
{ return new AntiqueFloorCabinet(); }

……

FloorCabinet getFloorCabinet()
{ return new ModernFloorCabinet(); }

Abstract Factory Design Pattern Applied to KitchenViewer

KitchenStyle
getWallCabinet()
getFloorCabinet()

Kitchen
getWallCabinet()
getFloorcabinet()

Client
renderKitchen(KitchenStyle)

ModernKStyle
getWallCabinet()
getFloorCabinet()

ModernKStyle
getWallCabinet()
getFloorCabinet()

AntiqueKStyle
getWallCabinet()
getFloorCabinet()

WallCabinet FloorCabinet

ModernWallCabinet

ModernFloorCabinet

AntiqueWallCabinet

AntiqueFloorCabinet

Abstract Factory Design Pattern

Style
getComponentA()
getComponentB()

Client
doOperation(Style myStyle)

Style1
getComponentA()
getComponentB()

Style2
getComponentA()
getComponentB()

ComponentA ComponentB

Style1ComponentA

Style1ComponentB

Style2ComponentA

Style2ComponentB

Collection

Concrete and Abstract Layers

KitchenStyle

Kitchen

Client

ModernKStyle

AntiqueKStyle

WallCabinet

FloorCabinet

ModernWallCabinet

ModernFloorCabinet

AntiqueWallCabinet

AntiqueFloorCabinet

Abstract level

Concrete level

getWallCabinet()

Abstract Factory Application
Sequence Diagram

myStyle:KitchenStyleClient

myStyle:
ModernKStyle

myStyle:
AntiqueKStyle

renderKitchen
(myStyle)

wallCabinet1:
ModernWallCabinet

wallCabinet1:
AntiqueWallCabinet

ModernWallCabinet()
getWallCabinet()

AntiqueWallCabinet()

myStyle.
getWallCabinet()

-- IF myStyle BELONGS TO ModernKStyle --

-- IF myStyle BELONGS TO AntiqueKStyle --

Potential use of this Design Pattern?

Style
getComponentA()
getComponentB()

Client
doOperation(Style myStyle)

Style1
getComponentA()
getComponentB()

Style2
getComponentA()
getComponentB()

ComponentA ComponentB

Style1ComponentA

Style1ComponentB

Style2ComponentA

Style2ComponentB

Collection

References

• Design Patterns

• Headfirst Design Patterns

• Software Design

Example: Starbuzz Coffee

• The coffee shop offers a variety of beverages

HouseBlend

cost()

Beverage

description

getDescription();
cost();
// Other methods

DarkRoast

cost()

Decaf

cost()

Espresso

cost()

Problem

• A customer may also ask for
condiments
– steamed milk
– soy
– mocha (otherwise known as chocolate)
– whipped milk

• Starbuzz charges a bit for each of these

HouseBlend

cost()

Beverage

description
milk
soy
mocha
whip

getDescription();
cost();

hasMilk(); setMilk();
hasSoy(); setSoy();
hasMocha(); setMocha();
hasWhip(); setWhip();

// Other methods

DarkRoast

cost()

Decaf

cost()

Espresso

cost()

Aspect of the system that
may change/vary?

Attempt 1

Potential Changes

• Potential changes:
– Price change to condiments
– New condiments
– Double moca
– …

Design idea

• Basic idea: extension at run time, not compile
time

• Definition: The Decorator pattern attaches
additional features to an object dynamically. It
provides a flexible alternative to subclassing
for extending functionality

Design approach 1

• Each beverage contains a dynamic list of
condiments

• Example
– Take a DarkRoast object
– Decorate it with a Mocha object
– Decorate it with a Whip object

UML class model?

Decorator design

• Example
– Take a DarkRoast object
– Decorate it with a Mocha object
– Decorate it with a Whip object
– Call the cost() method and rely on delegation to

add on the condiment cost

• Decorator adds its own behavior before or
after calling the decorated object

Decoration Delegation Process

Decorator Class
Model

Client

objDecorated

Decorator
doAction()

1

ConcreteComponent
doAction()

Component
doAction()

void doAction()
{ ….. // do actions special to this decoration
 objDecorated.doAction(); // pass along
}

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

ConcreteDecoratorA
doAction()

ConcreteDecoratorB
doAction()

Sequence Diagram for Decorator

:Client

doAction()

decoration1
:Decoration

doAction()

Decoration1.objDecorated
:Decoration

:Component

doAction()

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Decoration Features

• Decorators have the same supertype as the
objects they decorate

• You can use one or more decorators to wrap an
object
– Thus, you can pass decorated object in place of

original (wrapped) object
• The decorator adds its own behavior either

before or after delegating to the object it
decorates to

• Objects can be decorated at any time, including
run-time, with as many decorators as possible

Exercise

• Suppose we allow different sizes for the
beverages
– Tall (small)
– Grande (medium)
– Venti (large)

Some Common Design Patterns

Example: Weather-O-Rama

Weather-O-Rama

Weather-O-Rama Interface
WeatherData

getTemperature();
getHumidity();
getPressure();
measurementsChanged();
setMeasurements();
// other methods

This method gets called whenever
the weather measurements have
been updated.

First Implementation
void measurementsChanged() {

float temp = getTemperature() ;

float humidity = getHumidity() ;

float pressure = getPressure() ;

 currentConditionsDisplay->update(temp, humidity,
pressure) ;
statisticsDisplay->update(temp, humidity, pressure) ;

 forecastDisplay->update(temp, humidity, pressure) ;

}

By coding to concrete implementation, we have no way of
allowing other displays and plug in.

Observer Pattern

• Design Purpose: defines a run-time, one-to-
many dependency between objects so that
when one object (the subject) changes state,
all of the dependents (observers) are notified.

Observer Design Pattern

Subject
registerObserver();
removeObserver();
notifyObservers();

Observer
update()

ConcreteSubject
getState();
setState();

ConcreteObserver

update()

for all Observer’s o:
 o.update();

Client
1..n

Server part Client part

How does Observer apply these
design principles?

• Identify the aspects of your application that
vary and separate them from what stay the
same

• Program to an interface not implementation

• Favor composition over inheritance

Discussion

• Java Observation design:
update(Observable o, Object obj);

Subject
registerObserver();
removeObserver();
notifyObservers();

Observer
update()

ConcreteSubject
getState();
setState();

ConcreteObserver

update()

for all Observer’s o:
 o.update();

1..n

Subject
registerObserver();
removeObserver();
notifyObservers();

Observer
update()

ConcreteSubject
getState();
setState();

ConcreteObserver

update()

for all Observer’s o:
 o.update();

Client
1..n

	CS427a: Object-Oriented Programming Design Patterns for Flexible and Reusable design
	Example: Duck Game
	Initial Design
	Design Change: add fly()
	Slide 5
	Anticipating Changes
	Handling Varying Behaviors
	Design
	Programming to implementation vs interface/supertype
	Implementation
	Slide 11
	The Strategy Pattern
	Slide 13
	Summary: Design Principles
	Example: KitchenViewer Interface
	KitchenViewer Example
	Selecting Antique Style
	KitchenViewer Using Standard Inheritance
	The Abstract Factory Idea
	Abstract Factory Design Pattern Applied to KitchenViewer
	Abstract Factory Design Pattern
	Concrete and Abstract Layers
	Abstract Factory Application Sequence Diagram
	Potential use of this Design Pattern?
	References
	Example: Starbuzz Coffee
	Problem
	Slide 28
	Slide 29
	Potential Changes
	Design idea
	Design approach 1
	Decorator design
	Decoration Delegation Process
	Decorator Class Model
	Slide 36
	Decoration Features
	Exercise
	Some Common Design Patterns
	Example: Weather-O-Rama
	Weather-O-Rama
	Weather-O-Rama Interface
	First Implementation
	Observer Pattern
	Observer Design Pattern
	How does Observer apply these design principles?
	Discussion

