Computer Networks

Lecture 21

Distance Vector Routing Protocols

11/14/2013

Outline

- Admin and recap
- Distance vector protocols
Recap: Resource Allocation Framework

- Forward (design) engineering:
 - how to determine objective functions
 - given objective, how to design effective alg

\[
\begin{align*}
\text{max} & \quad \sum_{f \in F} U_f(x_f) \\
\text{subject to} & \quad Ax \leq C \\
\text{over} & \quad x \geq 0
\end{align*}
\]

- Reverse (understand) engineering:
 - understand current protocols (what are the objectives of TCP/Reno, TCP/Vegas?)
Recap: Internet Network Layer: Protocols

Network layer functions:

Routing protocols
- path selection
 e.g., RIP, OSPF, BGP

Control protocols
- error reporting
 e.g., ICMP

Network layer protocol (e.g., IP)
- addressing conventions
- packet format
- packet handling conventions

Control protocols
- router “signaling”
 e.g., RSVP

Recap: Data (Forwarding) Plane

Local forwarding table

<table>
<thead>
<tr>
<th>header value</th>
<th>output link</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>3</td>
</tr>
<tr>
<td>0101</td>
<td>2</td>
</tr>
<tr>
<td>0111</td>
<td>2</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
</tr>
</tbody>
</table>

Value in arriving packet's header
Recap: Routing Design Space

Routing

Goal: determine “good” paths (sequences of routers) thru network from source to dest.

- Routing has a large design space
 - who decides routing?
 - source routing: end hosts make decision
 - network routing: networks make decision
 - how many paths from source s to destination d?
 - multi-path routing
 - single path routing
 - does the route(s) provide QoS?
 - QoS
 - best effort, shortest path
 - will routing adapt to network traffic demand?
 - adaptive routing
 - static routing
Shortest/Lowest Cost Path Routing

- Represent network as a graph, with positive costs assigned to network links
- The path from a source to a destination chosen by the routing protocol is a shortest (lowest cost) path among all possible paths

Routing: Single-Path, Adaptive Routing

- Assume link costs reflect current traffic

Solution: Link costs are a combination of current traffic intensity (dynamic) and topology (static). To improve stability, the static topology part should be large. Thus less sensitive to traffic; thus non-adaptive.
Example: Cisco Proprietary Recommendation on Link Cost

- Link metric:
 - \(\text{metric} = \left[K_1 \times \text{bandwidth}^{-1} + (K_2 \times \text{bandwidth}^{-1}) / (256 - \text{load}) + K_3 \times \text{delay} \right] \times \left[K_5 / (\text{reliability} + K_4) \right] \)

By default, \(k_1=k_3=1 \) and \(k_2=k_4=k_5=0 \). The default composite metric for EIGRP, adjusted for scaling factors, is as follows:

\[
\text{EIGRP}_{\text{metric}} = 256 \times \left\{ \left[\frac{10^7}{\text{BW}_{\text{min}}} \right] + \left[\text{sum of delays} \right] \right\}
\]

\(\text{BW}_{\text{min}} \) is in kbps and the sum of delays are in 10s of microseconds.

Example: EIGRP Link Cost

- The bandwidth and delay for an Ethernet interface are 10 Mbps and 1 ms, respectively.
- The calculated EIGRP BW metric is as follows:
 - \(256 \times 10^7 / \text{BW} = 256 \times 10^7 / 10,000 \)
 - \(= 256 \times 10000 \)
 - \(= 2560000 \)
Outline

- Admin and recap
 - *Distance vector protocols*

Distance Vector Routing

- Basis of RIP, IGRP, EIGRP routing protocols

- Distributed alg to compute shortest paths
 - conceptually, runs for each destination separately
 - hence we consider one dest only
 - **state**: each node maintains a current estimate of distance to the destination
 - \(d\), denotes the distance estimation from node \(i\) to dest
 - **update rule**: based on Bellman-Ford alg.
Distance Vector Routing: Update

- At node i, the basic update rule:

\[d_i = \min_{j \in N(i)} (d_{ij} + d_j) \]

where
- \(d_i \) denotes the distance estimation from i to the destination,
- \(N(i) \) is set of neighbors of node i, and
- \(d_{ij} \) is the distance of the direct link from i to j

Synchronous Bellman-Ford (SBF)

- Nodes update in rounds:
 - there is a global clock;
 - at the beginning of each round, each node sends its estimate to dest to all of its neighbors;
 - at the end of the round, updates its estimation

\[d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h)) \]
Outline

- Network overview
- Control plane: routing overview
 - Distance vector protocols
 - synchronous Bellman-Ford (SBF)
 - SBF/∞

SBF/∞

- Initialization (time 0):

\[d_i(0) = \begin{cases} 0 & i = \text{dest} \\ \infty & \text{otherwise} \end{cases} \]
Consider D as destination; \(d(t) \) is a vector consisting of estimation of each node at round \(t \)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>E</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d(0))</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>0</td>
</tr>
<tr>
<td>(d(1))</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(d(2))</td>
<td>12</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(d(3))</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(d(4))</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Observations:
- \(d(0) \geq d(1) \geq d(2) \geq d(3) \geq d(4) \)
- After a few iterations \(d(n) = d(n+1) = d^* \)

\[
d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))
\]

A Nice Property of SBF: Monotonicity

- Consider two configurations \(d(t) \) and \(d'(t) \)
- If \(d(t) \geq d'(t) \)
 - i.e., each node has a higher estimate in \(d \) than in \(d' \),
- then \(d(t+1) \geq d'(t+1) \)
 - i.e., each node has a higher estimate in \(d \) than in \(d' \) after one round of synchronous update.
Correctness of SBF/∞

- **Claim:** \(d_i(h)\) is the length \(L_i(h)\) of a shortest path from \(i\) to the destination using \(\leq h\) hops
 - base case: \(h = 0\) is trivially true
 - assume true for \(\leq h\), i.e., \(L_i(h) = d_i(h)\), \(L_i(h-1) = d_i(h-1)\), ...

\[
d_i(h + 1) = \min_{j \in N(i)} (d_{ij} + d_j(h))
\]

Correctness of SBF/∞

- **consider** \(\leq h+1\) hops:
 \[
 L_i(h + 1) = \min(L_i(h), \min_{j \in N(i)} (d_{ij} + L_j(h}))
 = \min(d_i(h), \min_{j \in N(i)} (d_{ij} + d_j(h)))
 = \min(d_i(h), d_i(h + 1))
 \]

 since \(d_i(h) \leq d_i(h-1)\)

\[
d_i(h + 1) = \min_{j \in N(i)} (d_{ij} + d_j(h)) \leq \min_{j \in N(i)} (d_{ij} + d_j(h - 1)) = d_i(h)
\]

\[
L_i(h + 1) = d_i(h + 1)
\]
Bellman Equation

- We referred to the update rules as Bellman equations (BE):
 \[d_i = \min_{j \in N(i)} (d_{ij} + d_j) \]
 where \(d_D = 0 \).
- SBF/∞ solves the equations in a distributed way
- Does the equation have a unique solution (i.e., the shortest path one)?

Uniqueness of Solution to BE

- Assume another solution \(d \), we will show that \(d = d^* \)
 case 1: we show \(d \geq d^* \)

Since \(d \) is a solution to BE, we can construct paths as follows: for each \(i \), pick a \(j \) which satisfies the equation; since \(d^* \) is shortest, \(d \geq d^* \)
Uniqueness of Solution to BE

Case 2: we show $d \leq d^*$

assume we run SBF with two initial configurations:
- one is d
- another is SBF/∞ (d^∞),

\rightarrow monotonicity and convergence of SBF/∞ imply that $d \leq d^*$

Outline

- Network overview
- Control plane: routing overview
 - Distance vector protocols
 - synchronous Bellman-Ford (SBF)
 - SBF/∞
 - SBF/-1
Initialization (time 0):

\[d_i(0) = \begin{cases}
0 & i = \text{dest} \\
-1 & \text{otherwise}
\end{cases} \]

Example

Consider D as destination

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>E</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>d(0)</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>d(1)</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>d(2)</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>d(3)</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>d(4)</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>d(5)</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>d(6)</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Observation: \[d(0) \leq d(1) \leq d(2) \leq d(3) \leq d(4) \leq d(5) = d(6) = d^* \]
Correctness of SBF/-1

- SBF/-1 converges due to monotonicity
- At equilibrium, SBF/-1 satisfies Bellman equations:
 \[
 d_i^{(h+1)} = \min_{j \in N(i)} (d_{ij} + d_j^{(h)})
 \]
 where \(d_0 = 0\).
- Another solution is shortest path solution \(d^*\)
- Since there is a unique solution to the BE equations; thus SBF/-1 converges to shortest path

Discussion

- How do you prove that SBF converges under other non-negative initial conditions?
Toolbox

- A key technique for proving convergence (liveness) of distributed protocols: two extreme configurations to sandwich any real configurations

Discussion

- Problem of SBF?

\[d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h)) \]
Outline

- Network overview
- Control plane: routing overview
 - Distance vector protocols
 - synchronous Bellman-Ford (SBF)
 - asynchronous Bellman-Ford (ABF)

Asynchronous Bellman-Ford (ABF)

- No notion of global iterations
 - each node updates at its own pace
- Asynchronously each node i computes
 \[
 d_i = \min_{j \in N(i)} (d_{ij} + d_j^i)
 \]
 using last received value d_j^i from neighbor j.

- Asynchronous node j sends its estimate to its neighbor i:
 - there is an upper bound on the delay of estimate packets (no worry for out of order)
Distance Table: Example

Below is just one step! The protocol repeats forever!

<table>
<thead>
<tr>
<th>Destination</th>
<th>Distance Tables from Neighbors</th>
<th>Computation</th>
<th>E's Distance Table</th>
<th>Distance Table E sends to its neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 7 ∞</td>
<td>10 15 ∞</td>
<td>A: 10</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>7 0 ∞</td>
<td>17 8 ∞</td>
<td>B: 8</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>∞ 1 2</td>
<td>∞ 9 4</td>
<td>D: 4</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>∞ ∞ 0</td>
<td>∞ ∞ 2</td>
<td>D: 2</td>
<td></td>
</tr>
</tbody>
</table>

Below is just one step! The protocol repeats forever!

Asynchronous Bellman-Ford (ABF)

- In general, nodes are using different and possibly inconsistent estimates
Asynchronous Bellman-Ford (ABF)

- ABF will eventually converge to the shortest path
 - links can go down and come up - but if topology is stabilized after some time t, ABF will eventually converge to the shortest path!

- If the network is connected, then ABF converges in finite amount of time, if conditions are met

ABF Convergence

- There are too many different “runs” of ABF, so need to use monotonicity

- Consider two sequences:
 - SBF/∞: call the sequence $U()$
 - $SBF/-1$: call the sequence $L()$
System State

where can distance estimate from node j appear?

three types of distance estimates from node j:
- \(d_j \): current distance estimate at node j
- \(d_i^j \): last \(d_j \) that neighbor i received
- \(d_i^j \): those \(d_j \) that are still in transit to neighbor i
ABF Convergence

- Consider the time when the topology is stabilized as time 0

- $U(0)$ and $L(0)$ provide upper and lower bound at time 0 on all corresponding elements of states
 - $L_j(0) \leq d_j \leq U_j(0)$ for all d_j state at node j
 - $L_j(0) \leq d'_j \leq U_j(0)$
 - $L_j(0) \leq \text{update messages } d'_j \leq U_j(0)$

- d_j:
 - after at least one update at node j:
 - d_j falls between $L_j(1) \leq d_j \leq U_j(1)$

- d'_{ij}:
 - eventually all d'_{ij} that are only bounded by $L_j(0)$ and $U_j(0)$ are replaced with in $L_j(1)$ and $U_j(1)$
Asynchronous Bellman-Ford: Summary

- Distributed: each node communicates its routing table to its directly-attached neighbors
- Iterative: continues periodically or when link changes, e.g. detects a link failure
- Asynchronous: nodes need not exchange info/iterate in lock step!
- Convergence in finite steps, independent of initial condition if network is connected

Properties of Distance-Vector Algorithms

- Good news propagate fast

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initially</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>After 1 exchange</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>After 2 exchanges</td>
<td>1</td>
<td>2</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>After 3 exchanges</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>After 4 exchanges</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>∞</td>
</tr>
</tbody>
</table>
Properties of Distance-Vector Algorithms

- **Bad news propagate slowly (link A-B broke)**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- This is called the *counting-to-infinity* problem

 Question: why does counting-to-infinity happen?

What is a Routing Loop?

- A routing loop is a *global state* (consisting of the nodes' local states) at a global moment (observed by an oracle) such that there exist nodes A, B, C, ... E such that A (locally) thinks B as down stream, B thinks C as down stream, ... E thinks A as down stream

- Counting-to-infinity because of routing loops
The Reverse-Poison (Split-horizon) Hack

If the path to dest is through neighbor h, report ∞ to neighbor h for dest.

<table>
<thead>
<tr>
<th>D^E()</th>
<th>A</th>
<th>B</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>7</td>
<td>∞</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>C</td>
<td>∞</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>distance from neighbors</th>
<th>computation</th>
<th>E's distance table</th>
<th>distance table E sends to its neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>1, A</td>
<td>1</td>
<td>15</td>
<td>1, A</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>8, B</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4</td>
<td>4, D</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2, D</td>
</tr>
</tbody>
</table>

distance through neighbor

A sends the news to C
C sends the news to B

An Example Where Split-horizon Fails

- C and D fails, C will set its distance to D as ∞
- C sends the bad news (∞) to A
- A switches to use B to go to D
- A sends the news to C
- C sends the news to B

Question: what is the routing loop formed?
Outline

- Admin and recap
 - Distance vector protocols
 - synchronous Bellman-Ford (SBF)
 - asynchronous Bellman-Ford (ABF)
 - RIP, EIGRP

Example: RIP (Routing Information Protocol)

- Distance vector
- Included in BSD-UNIX Distribution in 1982
- Link cost: 1
- Distance metric: # of hops
- Distance vectors
 - exchanged every 30 sec via Response Message (also called advertisement) using UDP
 - each advertisement: route to up to 25 destination nets
RIP (Routing Information Protocol)

Routing table in I

<table>
<thead>
<tr>
<th>Destination Network</th>
<th>Next Router</th>
<th>Num. of hops to dest.</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>y</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>z</td>
<td>B</td>
<td>7</td>
</tr>
<tr>
<td>x</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

RIP: Link Failure and Recovery

If no advertisement heard after 180 sec --> neighbor/link declared dead
- routes via neighbor invalidated
- new advertisements sent to neighbors
- neighbors in turn send out new advertisements (if tables changed)
- link failure info quickly propagates to entire net
- reverse-poison used to prevent ping-pong loops
- set infinite distance = 16 hops (why?)
EIGRP Neighbor Discovery

- EIGRP routers actively establish relationships with their neighbors
 - EIGRP routers establish adjacencies with neighbor routers by using small **hello** packets.
 - The **Hello protocol** uses a multicast address of **224.0.0.10**, and all routers periodically send hellos.
 - Those receiving hellos from each other form adjacencies.

Default Hello Intervals and Hold Time for EIGRP

<table>
<thead>
<tr>
<th>Bandwidth</th>
<th>Example Link</th>
<th>Default Hello Interval</th>
<th>Default Hold Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.544 Mbps or less</td>
<td>Multipoint Frame Relay</td>
<td>60 seconds</td>
<td>180 seconds</td>
</tr>
<tr>
<td>Greater than 1.544 Mbps</td>
<td>T1, Ethernet</td>
<td>5 seconds</td>
<td>15 seconds</td>
</tr>
</tbody>
</table>
Neighbor Discovery - 3

Discussion

- Possibilities to avoid routing loops?