Recap: Basic Routing Setting; Shortest Path

- Represent network as a graph, with positive costs assigned to network links
- Each node computes the shortest (lowest cost) paths to all destinations

Recap: Distributed Distance-Vector

- Distributed shortest path alg. based on simple update rule:
 \[d_i(h+1) = \min_{j\in N(i)}(d_j + d_{ij}(h)) \]
- Key property: monotonicity
 - Consider two configurations \(d(t)\) and \(d'(t)\):
 - if \(d(t) \geq d'(t)\), then \(d(t+1) \geq d'(t+1)\)
 - Tool box: a key technique for proving convergence (liveness) of distributed protocols: two extreme configurations to sandwich any real configurations

Recap: Routing Loops

- Counting-to-infinity is due to routing loops:
 - A global state (consisting of the nodes' local states) at a global moment (observed by an oracle) such that there exist nodes \(A, B, C, \ldots E\) such that \(A\) (locally) thinks \(B\) as next hop, \(B\) thinks \(C\) as next hop, \(\ldots\) \(E\) thinks \(A\) as next hop
- Solution 1: Reverse-poison
 - Removes two-node loops but may not remove more-node loops
Discussion

- Possibilities to avoid routing loops?

Outline

- Recap
 - Distance vector protocols
 - Synchronous Bellman-Ford (SBF)
 - Asynchronous Bellman-Ford (ABF)
 - Destination-sequenced distance vector (DSDV)

Destination-Sequenced Distance Vector protocol (DSDV)

- One extension of distance vector protocol to address the counting-to-infinity problem

 Extension
 - DSDV tags each route with a sequence number
 - Each destination node D periodically advertises monotonically increasing even-numbered sequence numbers
 - When a node realizes that the link it uses to reach destination D is broken, it advertises an infinite metric and a sequence number which is one greater than the previous route (i.e., an odd seq. number)
 - The route is repaired by a later even-number advertisement from the destination

DSDV: More Detail

- Let’s assume the destination node is D

 There are optimizations but we present a simple version:
 - Each node B maintains \((S_B, d_B)\), where \(S_B\) is the sequence number at B for destination D and \(d_B\) is the best distance using a neighbor from B to D

 Both periodic and triggered updates
 - Periodically: D increases its seq. by 2 and broadcasts with \((S_D, 0)\)
 - If B is using C as next hop to D and B discovers that C is no longer reachable
 - B increases its sequence number \(S_B\) by 1, sets \(d_B\) to \(\infty\), and sends \((S_B, \infty)\) to all neighbors

Example

D: \(1\)

Will this trigger an update?

Example

D: \(1\)

Will this trigger an update?
DSDV: Simple Update

- Consider simple version, no optimization
- Update after receiving a message
 - assume B sends to A its current state \((S_B, d_B)\)
 - when A receives \((S_B, d_B)\)
 - if \(S_B > S_A\), then
 // always update if a higher seq#
 \[
 S_A = S_B
 \]
 - if \(d_B = \infty\) \(d_A = \infty\); else \(d_A = d_B + d(A,B)\)
 - else if \(S_A = S_B\), then
 // update for the same seq# only if better route
 \[
 d_A = d_B + d(A,B)
 \]
 and uses B as next hop

Example: CD link down

- C-D link is down, it increases its seq# and broadcasts its cost to be \(\infty\)

Claim: DSDV Does Not Form Loop

- Initially no loop (no one has next hop so no loop)
- Derive contradiction if a loop forms after a node processes an update,
 e.g., when A receives the update from B, A decides to use B as next hop and forms a loop

Technique: Global Invariants

- Global Invariant is a very effective method in understanding safety of distributed asynchronous protocols
- Invariants are defined over the states of the distributed nodes
 - Consider any node B.
 - Let's identify some invariants over the state of node B, i.e., \((S_B, d_B)\).

Invariants of a Single Node B

- Some invariants about the state of a node B
 - [I1] \(S_B\) is non-decreasing
 - [I2] \(d_B\) is non-increasing for the same sequence number

Invariants of if A Considers B as Next Hop

- Some invariants if A considers B as next hop
 - [I3] \(S_A\) cannot be an odd number, \(d_A\) is not \(\infty\)
 - [I4] \(S_B \geq S_A\)
 - A is having the seq# which B last sent to A; B's seq# might be increased after B sent its state
 - [I5] if \(S_B = S_A\) then \(d_B < d_A\)
 - because \(d_B\) is based on \(d_A\) which B sent to A some time ago, \(d_A\) since all link costs are positive, \(d_B\) might be decreased after B sent its state
Loop Freedom of DSDV

- Consider a critical moment
 - A starts to consider B as next hop, and we have a loop
- According to invariant I4 for each link in the loop (X considers Y as next hop):
 \[S^Y > S^X \]
- Two cases:
 \[S^Y > S^X \]
 - by transition along the loop \(S^B > S^B \)
 - all nodes along the loop have the same sequence number
 - apply I5, by transition along the loop \(d^B > d^B \)

Summary: DSDV

- DSDV uses sequence number to avoid routing loops
 - seq# partitions routing updates from different outside events
 - within same event, no loop so long each node only decreases its distance

EIGRP: Diffusive Update Alg.

- EIGRP: a proprietary routing protocol by Cisco based on a Diffusive Update Algorithm (DUAL)
- Both a recomputation part and a fast reroute (switching) part
- We focus on the fast switching part
 - key idea: checking condition before switching to another route to prevent potential loops

EIGRP Key Idea: Feasible Successors

- If the reported distance of a neighbor \(n \) is lower than the total distance using primary (current shortest), the neighbor \(n \) is a feasible successor
 \[d_n + d_{i\rightarrow n} \geq d_{primary} + d_{i\rightarrow primary} > d_n \]

EIGRP: Example

Will A use B as a feasible successor?

EIGRP: Example

Using Feasible Successor

- Assume that the DV alg. converges.
- The link to a node’s primary neighbor is down, and the node switches to a feasible successor.
- No loop will be formed

Discussion: Distance Vector Routing

- What do you like about distance vector routing?
- What do you not like about distance vector routing?

Churns of DV: One Example

Message sequences:
2. Node N tells N+1. (N-1 messages)
3. Node N+1 tells N+2, N+2 tells N+3, ...
4. Step 2 repeats
5. Now node N-2 tells node N-1
6. ...

A total of $O(N^2)$ messages

Outline

- Recap
 - Distance-vector protocols
 - synchronous Bellman-Ford (SBF)
 - asynchronous Bellman-Ford (ABF)
 - destination-sequenced distance vector (DSDV)
 - DUAL
 - Link state protocol

Link-State Routing

- Net topology, link costs are distributed to all nodes
 - all nodes have same info
- Link state distribution accomplished via “link state broadcast”
- Each node computes its shortest paths from itself to all other nodes
 - e.g., use Dijkstra’s algorithm, not distributed shortest path computation
- The only distributed part is link state broadcast

Link State Broadcast

- This is the hard part
- Basic event structure at node n
 - on initialization:
 - on state change to a link connected to n:
 - on receiving an LS:
 - forwards link state broadcast (link ID, link head, link tail, link up/down) to all links except the incoming link
Link State Broadcast

Node S updates link states connected to it.

To avoid forwarding the same link state announcement (LSA) multiple times (forming a loop), each node remembers the received LSAs.
- Second LSA[e] received by E from C is discarded.
- Second LSA[e] received by C from E is discarded as well.
- Node H receives LSA[e] from two neighbors, and will discard one of them.

Link State Broadcast: Issues

- Problem: Out of order delivery
 - link down and then up
 - A node may receive up first and then down.
- Solution
 - Each link update is given a sequence number: (initiator, seq#, link, status).
 - If the seq# of an update of a link is not higher than the highest seq# a router has seen, drop the update.
 - Otherwise, forward it to all links except the incoming link.
- Problem of solution: seq# corruption
- Solution: age field

OSPF (Open Shortest Path First)

- "Open": publicly available
- Uses Link State algorithm
 - link state (LS) packet dissemination
 - topology map at each node
 - route computation using Dijkstra’s algorithm

http://en.wikipedia.org/wiki/Open_Shortest_Path_First
OSPF “Advanced” Features (not in RIP)

- Multiple same-cost paths allowed (only one path in RIP)
- For each link, multiple cost metrics for different Type Of Service (e.g., satellite link cost set “low” for best effort; high for real time)
- Security: all OSPF messages authenticated (to prevent malicious intrusion); TCP connections used
- Hierarchical OSPF

Hierarchical OSPF

- Link-state advertisements only in area each node has detailed area topology - only know direction (shortest path) to nets in other area.
- Two-level hierarchy: local area, backbone.

Why Hierarchy?

- Information hiding (filtered) => reduce computation, bandwidth, storage

Discussion: Link State Routing

- What do you like about link state routing?
- What do you not like about link state routing?

Summary

- Basic routing protocols
 - Distance vector protocols
 - Link state protocols
- Remaining question: how to design the routing infrastructure for the global Internet?

Outline

- Recap
- Distance-vector protocols
- Link state protocol
 - Routing in the Internet
Routing in the Internet

- The Global Internet consists of Autonomous Systems (AS) interconnected with each other
 - An AS is identified by an AS Number (ASN), e.g. Yale ASN is 29
 - Each AS owns part of IP address space
 - Autonomous systems connect to each other
- Try http://www.fixedorbit.com/search.htm

Internet ISP Connectivity

Routing with AS

- Internet routing is divided into intra-AS routing and inter-AS routing
 - Intra-AS
 - A protocol running inside an AS is called an Interior Gateway Protocol (IGP)
 - RIP: Routing Information Protocol
 - E/IGRP: Interior Gateway Routing Protocol (Cisco)
 - OSPF: Open Shortest Path First
 - IS-IS: very similar to OSPF (or should we say OSPF is very similar to IS-IS?)
 - Inter-AS
 - A protocol runs among AS's is also called an Exterior Gateway Protocol (EGP)
 - For global connectivity, a single interdomain routing protocol

Intra-AS and Inter-AS: Example

Routing in the Internet: Example
Many Routing Processes on a Single Router

- BGP
- RIP domain
- OSPF domain

Forwarding Table Manager

OS kernel

BGP Setup

BGP (Border Gateway Protocol): the de facto Inter-AS standard

Path Vector protocol:
- similar to Distance Vector protocol
- a border gateway sends to a neighbor entire path (i.e., a sequence of ASNs) to a destination, e.g.,
 - gateway X sends to neighbor N its path to dest. Z:
 path \((X, Z) = X, Y_1, Y_2, Y_3, \ldots, Z \)
 - if N selects path \((X, Z) \) advertised by X, then:
 path \((N, Z) = N, path (X, Z) \)

Internet Interdomain Routing: BGP

Internet Interdomain Routing: BGP

- Path Vector protocol:
 - similar to Distance Vector protocol
 - a border gateway sends to a neighbor entire path (i.e., a sequence of ASNs) to a destination, e.g.,
 gateway X sends to neighbor N its path to dest. Z:
 \(path (X, Z) = X, Y_1, Y_2, Y_3, \ldots, Z \)
 - if N selects path \((X, Z) \) advertised by X, then:
 \(path (N, Z) = N, path (X, Z) \)

BGP Operations (Simplified)

- Establish session on TCP port 179
- Exchange all active routes
- Exchange incremental updates
- while connection is ALIVE exchange UPDATE message select best available route if route changes, export to neigh.

BGP Messages

- OPEN: opens TCP connection to peer and authenticates sender
- UPDATE: advertises new path (or withdraws old)
- KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs OPEN request
- NOTIFICATION: reports errors in previous msg; also used to close connection

Benefits of Including Path Vector

- Path vector prevents counting-to-infinity problem
- Path vector allows an AS to define local policies on the selection of AS paths for each destination
See BGP Paths

- http://www.fixedorbit.com/trace.htm