Computer Networks

Lecture 20

Bandwidth Allocation Framework;
Intro to Network/Routing

11/12/2013

Outline

- Admin and recap
- Bandwidth allocation framework
- Network overview
- Routing overview
Admin.

- Exam 1
 - High - 75
 - Low - 44
 - Mean - 66.97
 - Std. dev - 7.3
 - Please discuss any question with Namratha

- Assignment four
 - Questions?

Admin: Web Server Benchmarking

Apache

Apache: 4.925 Gbps
Fastest student server: 7.530 Gbps
6 students receive 10 points for comparable perf to Apache
Recap: TCP/Reno and TCP/Vegas

<table>
<thead>
<tr>
<th>Congestion signal</th>
<th>TCP/Reno</th>
<th>TCP/Vegas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>loss rate p</td>
<td>queueing delay $T_{queueing}$</td>
</tr>
</tbody>
</table>

Dynamics (x')

- TCP/Reno: $\dot{x} = \frac{1}{RTT} - \frac{1}{2} p x^2$
- TCP/Vegas: $\dot{x} = \frac{1}{RTT} (RTT_{min} + \frac{a}{x} - RTT)$

Equilibrium

- TCP/Reno: $X_{reno} = \frac{\alpha_{reno}}{RTT \sqrt{p}}$
- TCP/Vegas: $X_{vegas} = \frac{\alpha_{vegas}}{T_{queueing}}$

Recap: Interpreting Congestion Measure

$$p_f = \sum_{l \text{ uses } f} q_l$$

TCP/Reno: $\dot{x} = \frac{1}{RTT} - \frac{1}{2} p x^2 = \frac{1}{2} x^2 \left(\frac{2}{RTT^2 x^2} - p \right)$

TCP/Vegas: $\dot{x} = \frac{1}{RTT} (RTT_{min} + \frac{a}{x} - RTT) = \frac{1}{RTT} \left(\frac{a}{x} - T_{queueing} \right)$
Recap: Allocation Examples

<table>
<thead>
<tr>
<th>Objective</th>
<th>Allocation (x1, x2, x3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP/Reno</td>
<td>0.26 0.74 0.74</td>
</tr>
<tr>
<td>TCP/Vegas</td>
<td>1/3 2/3 2/3</td>
</tr>
<tr>
<td>Max Throughput</td>
<td>0 1 1</td>
</tr>
<tr>
<td>Max-min</td>
<td>1/2 1/2 1/2</td>
</tr>
<tr>
<td>Max sum log(x)</td>
<td>1/3 2/3 2/3</td>
</tr>
<tr>
<td>Max sum of -1/(RTT^2 x)</td>
<td>0.26 0.74 0.74</td>
</tr>
</tbody>
</table>

Resource Allocation Frameworks

- **Forward (design) engineering:**
 - how to determine objective functions
 - given objective, how to design effective alg

\[
\begin{array}{ccc}
\text{max} & \sum_{f \in F} U_f(x_f) \\
\text{subject to} & \sum_{f \text{ link } l} x_f & \leq c_l \text{ for any link } l \\
& x & \geq 0
\end{array}
\]

- **Reverse (understand) engineering:**
 - understand current protocols (what are the objectives of TCP/Reno, TCP/Vegas?)
Network Bandwidth Allocation Using Nash Bargain Solution (NBS)

- **High level picture**
 - Given the feasible set of bandwidth allocation, we want to pick an allocation point that is efficient and fair.

- **The determination of the allocation point should be based on “first principles” (axioms)**

Nash Bargain Solution (NBS)

- Assume a finite, convex feasible set in the first quadrant.

- **Axioms**
 - Pareto optimality
 - Impossibility of increasing the rate of one user without decreasing the rate of another.
 - Symmetry
 - A symmetric feasible set yields a symmetric outcome.
 - Invariance of linear transformation
 - The allocation must be invariant to linear transformations of users' rates.
 - Independence of irrelevant alternatives
 - Assume s is an allocation when feasible set is R, s ∈ T ⊆ R, then s is also an allocation when the feasible set is T.
Nash Bargain Solution (NBS)

- Surprising result by John Nash (1951)
 - the rate allocation point is the feasible point which maximizes
 \[x_1 x_2 \cdots x_F \]
- This is equivalent to maximize
 \[\sum_f \log(x_f) \]
- In other words, assume each flow has utility function \(\log(x_f) \)
- I will give a proof for \(F = 2 \)
 - think about \(F > 2 \)

Nash Bargain Solution

- Assume \(s \) is the feasible point which maximizes \(x_1 x_2 \)
- Scale the feasible set so that \(s \) is at \((1, 1)\)
- Question: after the transformation, is \(s \) still the point maximizing \(x_1 x_2 \)?:

...
Nash Bargain Solution

Question: after the transformation, is there any feasible point with $x_1 + x_2 > 2$?

Nash Bargain Solution

- Consider the symmetric rectangle U containing the original feasible set.
- According to symmetry and Pareto, s is the allocation when feasible set is U.
- According to independence of irrelevant alternatives, the allocation of R is s as well.
NBS ⇔ Proportional Fairness

- Allocation is proportionally fair if for any other allocation, aggregate of proportional changes is non-positive, e.g. if x_f is a proportional-fair allocation, and y_f is any other feasible allocation, then require

$$\sum_f \frac{y_f - x_f}{x_f} \leq 0$$

Summary: Allocation Schemes

- Max throughput
- Max-min
- Proportional fair
 - NBS
Roadmap: Resource Allocation Frameworks

- Forward (design) engineering:
 - how to determine objective functions
 - given objective, how to design effective alg

- Reverse (understand) engineering:
 - understand current protocols (what are the objectives of TCP/Reno, TCP/Vegas?)

A Two-Slide Summary of Constrained Convex Optimization Theory

\[
\begin{align*}
\text{max} & \quad \sum_{j=1}^{m} U_j(x_j) \\
\text{subject to} & \quad Ax \leq C \\
& \quad x \geq 0
\end{align*}
\]

- Map each \(x \) in \(S \), to \([g(x), f(x)]\)
- For each slope \(q \geq 0 \), computes \(f(x) - q g(x) \) of all mapped \([f(x), g(x)]\)

\[
D(q) = \max_{x\in S} (f(x) - qg(x))
\]
A Two-Slide Summary of Constrained Convex Optimization Theory

\[
\begin{align*}
\max & \quad f(x) \\
\text{subject to} & \quad g(x) \leq 0 \\
\text{over} & \quad x \in S
\end{align*}
\]

\[D(q) = \max_{x \in S} (f(x) - qg(x))\]

- \(D(q)\) is called the dual; \(q \geq 0\) are called prices in economics.
- \(D(q)\) provides an upper bound on obj.
- According to optimization theory: when \(D(q)\) achieves minimum over all \(q \geq 0\), then the optimization objective is achieved.

Primal

\[
\begin{align*}
\max & \quad \sum_{f \in F} U_f(x_f) \\
\text{subject to} & \quad \sum_{f : f \text{ uses link } l} x_f \leq c_l \text{ for any link } l \\
\text{over} & \quad x \geq 0
\end{align*}
\]

Q: Why is it hard to solve the primal problem?
Dual of the Primal

\[
\begin{align*}
\text{max} & \quad \sum_{f \in F} U_f(x_f) \\
\text{subject to} & \quad \sum_{f \in F} x_f \leq c_l \text{ for any link } l \\
\text{over} & \quad x \geq 0
\end{align*}
\]

\[
D(q) = \max_{x_f \geq 0} \left(\sum_{f \in F} U_f(x_f) - \sum_{l:f \text{ uses } l} q_l \left(\sum_{f \in F} x_f - c_l \right) \right)
\]

Decomposition

- Assume each link \(l \) has non-negative congestion signal \(q_l \), consider the dual \(D(q) \)

\[
D(q) = \max_{x_f \geq 0} \left(\sum_{f \in F} U_f(x_f) - \sum_{l:f \text{ uses } l} q_l \left(\sum_{f \in F} x_f - c_l \right) \right)
\]

\[
= \max_{x_f \geq 0} \sum_{f \in F} \left(U_f(x_f) - x_f \sum_{l:f \text{ uses } l} q_l \right) + \sum_{l} q_l c_l
\]

\[
= \sum_{f} \max_{x_f \geq 0} \left(U_f(x_f) - x_f \sum_{l:f \text{ uses } l} q_l \right) + \sum_{l} q_l c_l
\]
Distributed Optimization: User Problem

Given price signal per unit rate p_f (=sum of q_i along the path) flow f chooses rate x_f to maximize:

$$\max_{x_f} U_f(x_f) - x_f p_f$$
over $x_f \geq 0$

Using the price signals, the optimization problem of each user is decoupled: independent of each other!

How should flow f adjust x_f locally?

$$\Delta x_f \propto U'_f(x_f) - p_f$$

At equilibrium (i.e., at optimal), x_f satisfies:

$$U'_f(x_f) - p_f = 0$$
Interpreting Congestion Measure

\[p_f = \sum_{f \text{ uses } l} q_l \]

\[\Delta x_f \propto U_f'(x_f) - p_f \]

Distributed Optimization: Network Problem

\[D(q) = \sum_{x_f, x_l} \max_{x_f} \left(U_f(x_f) - x_f \sum_{l, f \text{ uses } l} q_l \right) + \sum q_i \]

The network (i.e., link l) adjusts the link signals \(q_l \) (assume after all flows have picked their optimal rates given congestion signal)

\[\min_{q \geq 0} \tilde{D}(q) = \sum_{l} q_l (c_l - \sum_{f: l \text{ uses } l} x_f) \]
Distributed Optimization: Network Problem

\[\min_{q \geq 0} D(q) = \sum_l q_l (c_l - \sum_{f: l \text{ uses } l} x_f) \]

how should link \(l \) adjust \(q_l \) locally?

\[\Delta q_l \propto -\frac{\partial D(q)}{q_l} \]

\[\frac{\partial}{\partial q_l} D(q) = c_l - \sum_{f: l \text{ uses } l} x_f \]

\[\Delta q_l \propto \sum_{f: l \text{ uses } l} x_f - c_l \]

Decomposition

- **SYSTEM(U):**
 \[\max \sum_{f \in F} U_f(x_f) \]
 \[\text{subject to } \sum_{f: f \text{ uses } l} x_f \leq c_l \text{ for any link } l \]
 \[\text{over } x \geq 0 \]

- **USER\(f \):**
 \[\max_{x_f} U_f(x_f) - x_f p_f \]
 \[\text{over } x_f \geq 0 \]

- **NETWORK:**
 \[\min_{q \geq 0} \tilde{D}(q) = \sum_l q_l (c_l - \sum_{f: l \text{ uses } l} x_f) \]
Outline

❖ Admin and recap
❖ Bandwidth allocation framework
 ❖ framework
 ❖ Nash Bargaining Solution (NBS)
 ❖ distributed computation
 ❖ TCP/Reno, TCP/Vegas revisited

TCP/Reno Dynamics

\[\Delta x_f \propto U'_f(x_f) - p_f \]

\[\dot{x} = \frac{x^2}{2} \left(\frac{2}{RTT^2 x^2} - p \right) \]

\[U'(x_f) - p_f \]

\[\Rightarrow U_f(x_f) = \left(\frac{\sqrt{2}}{x_f RTT} \right)^2 \Rightarrow U_f(x_f) = -\frac{2}{RTT^2 x_f} \]
TCP/Vegas Dynamics

\[\Delta x_f \propto U'_f(x_f) - p_f \]

\[\dot{x}_f = \frac{x}{RTT^2} \left(\frac{\log(x_f)}{x_f} - (RTT - RTT_{\text{min}}) \right) \]

\[U'_f(x_f) - p_f \]

\[\Rightarrow U'_f(x_f) = \frac{\alpha}{x_f} \quad \Rightarrow U_f(x_f) = \alpha \log(x_f) \]

Summary: TCP/Vegas and TCP/Reno

- Pricing signal is queueing delay \(T_{\text{queueing}} \)
- Pricing signal is loss rate \(p \)

\[x_f = \frac{\alpha}{T_{\text{queueing}}} \]

\[x_f = \frac{\alpha}{RTT \sqrt{p}} \]

\[U'_f(x_f) = T_{\text{queueing}} \]

\[U'_f(x_f) = p \]

\[\Rightarrow U'_f(x_f) = \frac{\alpha}{x_f} \]

\[\Rightarrow U'_f(x_f) = \left(\frac{\alpha}{x_fRTT} \right)^2 \]

\[\Rightarrow U_f(x_f) = \alpha \log(x_f) \]

\[\Rightarrow U_f(x_f) = -\frac{\alpha'}{RTT^2 x_f} \]
Summary: Resource Allocation Frameworks

- **Forward (design) engineering:**
 - how to determine objective functions
 - given objective, how to design effective alg

- **Reverse (understand) engineering:**
 - understand current protocols (what are the objectives of TCP/Reno, TCP/Vegas?)

- **Additional pointers:**
 - http://www.statslab.cam.ac.uk/~frank/pf/

Outline

- Admin and recap
- Bandwidth allocation framework
 - Network overview
Network Layer

- Transport packet from source to dest.
- Network layer in every host, router

Most basic functions:
- Control plane: path determination and call setup
 - determine routes taken by packets from sources to destinations
- Data plane: forwarding
 - move packets from router's input port to router output port

Internet Network Layer: Protocols

Network layer functions:

- **Routing protocols**
 - path selection
 - e.g., RIP, OSPF, BGP

- **Control protocols**
 - error reporting
 - e.g., ICMP

- **Control protocols**
 - router “signaling”
 - e.g., RSVP

- Network layer protocol (e.g., IP)
 - addressing conventions
 - packet format
 - packet handling conventions

Transport layer

Link layer

physical layer
Data Plane: Forwarding

Routing and call setup

Local forwarding table
- header value
- output link
 - 0100: 3
 - 0101: 2
 - 0111: 2
 - 1001: 1

Value in arriving packet’s header

Control Plane: Routing

Routing
Goal: determine “good” paths (sequences of routers) thru network from source to dest.

Graph abstraction for the routing problem:
- graph nodes are routers
- graph edges are physical links
 - links have properties: delay, capacity, $ cost, policy
Routing Design Space

Routing has a large design space

- who decides routing?
 - source routing: end hosts make decision
 - network routing: networks make decision

- how many paths from source s to destination d?
 - multi-path routing
 - single path routing

- does the route(s) provide QoS?
 - QoS
 - best effort

- will routing adapt to network traffic demand?
 - adaptive routing
 - static routing

Routing Design Space:
User-based, Multipath, Adaptive

Routing has a large design space

- who decides routing?
 - source routing: end hosts make decision
 - network routing: networks make decision

- how many paths from source s to destination d?
 - multi-path routing
 - single path routing

- does the route(s) provide QoS?
 - QoS
 - best effort

- will routing adapt to network traffic demand?
 - adaptive routing
 - static routing

...
User Optimal, Multipath, Adaptive

- User optimal: users pick the shortest routes (selfish routing)

![Diagram](image)

- Braess’s paradox

Bound on Price of Anarchy

For a network with linear latency functions

\[\text{total latency of user (selfish) routing for given traffic demand} \leq 4/3 \]

\[\text{total latency of network optimal routing for the traffic demand} \]
Bound on Price of Anarchy

- For any network with continuous, non-decreasing latency functions →

 total latency of user (selfish) routing for given traffic demand ≤

 total latency of network optimal routing for twice traffic demand

Routing Design Space:

Adaptive Routing

- Routing has a large design space
 - who decides routing?
 - source routing: end hosts make decision
 - network routing: networks make decision
 - how many paths from source s to destination d?
 - multi-path routing
 - single path routing
 - does the route(s) provide QoS?
 - QoS
 - best effort
 - will routing adapt to network traffic demand?
 - adaptive routing
 - static routing
Routing: Single-Path, Adaptive Routing

- Assume link costs reflect current traffic

Solution: Link costs are a combination of current traffic intensity (dynamic) and topology (static). To improve stability, the static topology part should be large. Thus less sensitive to traffic; thus non-adaptive.