Network Transport Layer:
Primal-Dual Resource Allocation;
TCP in New Settings

Y. Richard Yang

http://zoo.cs.yale.edu/classes/cs433/

4/6/2016
Outline

- Admin and recap
- Bandwidth allocation framework
- Network overview
Admin.

- Exam 1
 - High - 74
 - Low - 36
 - Solutions and grading rubric to be posted online
 - Please discuss any questions with me and TFs

- Assignment four
 - Questions?

- Projects
Admin: Web Server Benchmarking (2016; Using Zoo Machines)

Performance KB/s (Zoo Machine, 1 Gpbs Link)
Admin: Web Server Benchmarking (Dedicated Machine; 2013)

Apache (2013)

- Apache: 4.925 Gbps
- Fastest student server: 7.530 Gbps
Outline

- Recap
- Transport congestion control
 - What is congestion
 - The AIMD alg
 - TCP/reno congestion control
 - TCP/Vegas
 - A unifying view of TCP/Reno TCP/Vegas
 - Network wide resource allocation
 - Framework
 - Axiom derivation of network-wide objective function
 - Derive distributed algorithm
Outline

- Recap
- Transport congestion control
 - What is congestion
 - The AIMD alg
 - TCP/reno congestion control
 - TCP/Vegas
 - A unifying view of TCP/Reno TCP/Vegas
 - Network wide resource allocation
 - Framework
 - Axiom derivation of network-wide objective function
 - Derive distributed algorithm
Recap: TCP/Reno and TCP/Vegas

<table>
<thead>
<tr>
<th></th>
<th>TCP/Reno</th>
<th>TCP/Vegas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestion signal</td>
<td>loss rate p</td>
<td>queueing delay $T_{queueing}$</td>
</tr>
<tr>
<td>Dynamics (x')</td>
<td>$\dot{x} = \frac{1}{RTT^2} - \frac{1}{2}px^2$</td>
<td>$\dot{x} = \frac{x}{RTT^2}(RTT_{min} + \frac{\alpha}{x} - RTT)$</td>
</tr>
<tr>
<td>Equilibrium</td>
<td>$x_{reno} = \frac{\alpha_{reno}}{RTT \sqrt{p}}$</td>
<td>$x_{vegas} = \frac{\alpha_{vegas}}{T_{queueing}}$</td>
</tr>
</tbody>
</table>
Recap: Interpreting Congestion Measure

\[p_f = \sum_{l \text{ uses } f} q_l \]

TCP/Reno: \[\dot{x} = \frac{1}{RTT^2} - \frac{1}{2} px^2 = \frac{1}{2} x^2 \left(\frac{2}{RTT^2 x^2} - p \right) \]

TCP/Vegas: \[\dot{x} = \frac{x}{RTT^2} (RTT_{\text{min}} + \frac{\alpha}{x} - RTT) = \frac{x}{RTT^2} \left(\frac{\alpha}{x} - T_{\text{queueing}} \right) \]
Recap: Network-Wide Resource Allocation Examples

<table>
<thead>
<tr>
<th>Objective</th>
<th>Allocation (x1, x2, x3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP/Reno</td>
<td>0.26 0.74 0.74</td>
</tr>
<tr>
<td>TCP/Vegas</td>
<td>1/3 2/3 2/3</td>
</tr>
<tr>
<td>Max Throughput</td>
<td>0 1 1</td>
</tr>
<tr>
<td>Max-min</td>
<td>$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$</td>
</tr>
<tr>
<td>Max sum log(x)</td>
<td>1/3 2/3 2/3</td>
</tr>
<tr>
<td>Max sum of $-1/(RTT^2 , x)$</td>
<td>0.26 0.74 0.74</td>
</tr>
</tbody>
</table>
Roadmap: Resource Allocation Frameworks

- Engineering (design):
 - how to determine objective?
 - given objective, how to design effective alg?

\[
\begin{align*}
\text{max} & \quad \sum_{f \in F} U_f(x_f) \\
\text{subject to} & \quad \sum_{f: f \text{ uses link } l} x_f \leq c_l \text{ for any link } l \\
\text{over} & \quad x \geq 0
\end{align*}
\]

- Science/reverse engineering (understand):
 - better understanding of current protocols
Recap: Nash Bargain Solution (NBS)

- Assume a finite, convex feasible set

- Axioms
 - Pareto optimality
 - impossibility of increasing the rate of one user without decreasing the rate of another
 - Symmetry
 - a symmetric feasible set yields a symmetric outcome
 - Invariance of linear transformation
 - the allocation must be invariant to linear transformations of users' rates
 - Independence of irrelevant alternatives
 - assume s is an allocation when feasible set is R, s ∈ T ⊆ R, then s is also an allocation when the feasible set is T
Recap: Nash Bargain Solution (NBS)

- Surprising result by John Nash (1951)
 - The rate allocation point is the feasible point which maximizes
 \[x_1x_2 \cdots x_F \]
 - This is equivalent to maximize
 \[\sum_f \log(x_f) \]

- In other words, assume each flow \(f \) has utility function \(\log(x_f) \)
Outline

- Recap
- Transport congestion control
 - What is congestion
 - The AIMD alg
 - TCP/reno congestion control
 - TCP/Vegas
 - A unifying view of TCP/Reno TCP/Vegas
- Network wide resource allocation
 - Framework
 - Axiom derivation of network-wide objective function
 - Derive distributed algorithm
Problem

\[
\begin{align*}
\text{max} & \quad \sum_{f \in F} U_f(x_f) \\
\text{subject to} & \quad \sum_{f : f \text{ uses link } l} x_f \leq c_l \text{ for any link } l \\
\text{over} & \quad x \geq 0
\end{align*}
\]

Typical setting:
\[
\begin{align*}
\text{max } f(x) \\
\text{s.t. } x \text{ in } S
\end{align*}
\]
Problem

\[
\begin{align*}
\text{max} & \quad \sum_{f \in F} U_f(x_f) \\
\text{subject to} & \quad \sum_{f : f \text{ uses link } l} x_f \leq c_l \text{ for any link } l \\
\text{over} & \quad x \geq 0
\end{align*}
\]

Q: Why is it hard to solve the problem using a distributed protocol (i.e., in the Internet)?
A Two-Slide Summary of Constrained Convex Optimization Theory

\[
\begin{align*}
\max & \quad f(x) \\
\text{subject to} & \quad g(x) \leq 0 \\
\text{over} & \quad x \in S
\end{align*}
\]

\(f(x)\) concave
\(g(x)\) linear
\(S\) is a convex set

- Map each \(x\) in \(S\), to \([g(x), f(x)]\)
- For each slope \(q \geq 0\), computes \(f(x) - qg(x)\) of all mapped \([f(x), g(x)]\)

\[
D(q) = \max_{x \in S} \left(f(x) - qg(x) \right)
\]
A Two-Slide Summary of Constrained Convex Optimization Theory

\[
\begin{align*}
\max & \quad f(x) \\
\text{subject to} & \quad g(x) \leq 0 \\
\text{over} & \quad x \in S
\end{align*}
\]

- \(f(x) \) concave
- \(g(x) \) linear
- \(S \) is a convex set

\[
D(q) = \max_{x \in S} \left(f(x) - qg(x) \right)
\]

- \(D(q) \) is called the dual;
- \(q \ (\geq 0) \) are called prices in economics
- \(D(q) \) provides an upper bound on obj.
- According to optimization theory:
 - When \(D(q) \) achieves minimum over all \(q \ (\geq 0) \), then the optimization objective is achieved.
Dual of the Primal

\[
\begin{align*}
\text{max} & \quad \sum_{f \in F} U_f \left(x_f \right) \\
\text{subject to} & \quad \sum_{f: f \text{ uses link } l} x_f \leq c_l \text{ for any link } l \\
\text{over} & \quad x \geq 0 \\
\end{align*}
\]

\[D(q) = \max_{x_f \geq 0} \left(\sum_f U_f (x_f) - \sum_l q_l \left(\sum_{f: \text{uses } l} x_f - c_l \right) \right)\]
Decomposition

Assume each link \(l \) has non-negative congestion signal \(q_l \), consider the dual \(D(q) \)

\[
D(q) = \max_{x_f \geq 0} \left(\sum_f U_f(x_f) - \sum_l q_l \left(\sum_{f: \text{uses } l} x_f - c_l \right) \right)
\]

\[
= \max_{x_f \geq 0} \sum_f \left(U_f(x_f) - x_f \sum_{l: f \text{ uses } l} q_l \right) + \sum_l q_l c_l
\]

\[
= \sum_f \max_{x_f \geq 0} \left(U_f(x_f) - x_f \sum_{l: f \text{ uses } l} q_l \right) + \sum_l q_l c_l
\]
Distributed Optimization: User Problem

Given network-wide signal per unit rate p_f (=sum of q_i along the path), flow f chooses rate x_f to maximize:

$$\max_{x_f} \ U_f(x_f) - x_f p_f$$

over $x_f \geq 0$

Using the network signals, the optimization problem of each user is **decoupled**: independent of each other!
Distributed Optimization: User Problem

How should flow f adjust x_f locally?

$$\Delta x_f \propto U'_f (x_f) - p_f$$

At equilibrium (i.e., at optimal), x_f satisfies:

$$U'_f (x_f) - p_f = 0$$
Interpreting Congestion Measure

\[p_f = \sum_{f \text{ uses } l} q_l \]

\[\Delta x_f \propto U'_f (x_f) - p_f \]
Distributed Optimization: Network Problem

\[D(q) = \sum_{f} \max_{x_f \geq 0} \left(U_f(x_f) - x_f \sum_{l: f \text{ uses } l} q_l \right) + \sum_{l} q_l c_l \]

Assume after all flows have picked their optimal rates given congestion signal, the network (i.e., link \(l \)) adjusts the link signals \(q_l \):

\[
\min_{q \geq 0} \sum_{l} q_l \left(c_l - \sum_{f: f \text{ uses } l} x_f \right)
\]
Distributed Optimization: Network Problem

\[
\min_{q \geq 0} D(q) = \sum_l q_l (c_l - \sum_{f : f \text{ uses } l} x_f)
\]

how should link \(l \) adjust \(q_l \) locally?

\[
\Delta q_l \propto -\frac{\partial D(q)}{q_l}
\]

\[
\frac{\partial}{\partial q_l} D(q) = c_l - \sum_{f : \text{uses } l} x_f
\]

\[
\Delta q_l \propto \sum_{f : \text{uses } l} x_f - c_l
\]
Decomposition

- **SYSTEM(U):**

 \[
 \text{max} \sum_{f \in F} U_f(x_f) \\
 \text{subject to} \sum_{f : f \text{ uses } l} x_f \leq c_l \text{ for any link } l \\
 \text{over } x \geq 0
 \]

- **USER}_f:*

 \[
 \text{max} U_f(x_f) - x_f p_f \quad \text{over } x_f \geq 0
 \]

- **NETWORK:**

 \[
 \min_{q \geq 0} \tilde{D}(q) = \sum_l q_l (c_l - \sum_{f : f \text{ uses } l} x_f)
 \]
Outline

- Recap
- Transport congestion control
 - What is congestion
 - The AIMD alg
 - TCP/reno congestion control
 - TCP/Vegas
 - A unifying view of TCP/Reno TCP/Vegas
 - Network wide resource allocation
 - Framework
 - Axiom derivation of network-wide objective function
 - Derive distributed algorithm
 - TCP/Reno, TCP/Vegas revisited
TCP/Reno Dynamics

\[\Delta x_f \propto U'_f (x_f) - p_f \]

\[\dot{x} = \frac{x^2}{2} \left(\frac{2}{RTT^2 x^2} - p \right) \]

\[U'_f (x_f) - p_f \]

\[\Rightarrow U'_f (x_f) = \left(\frac{\sqrt{2}}{x_f RTT} \right)^2 \]

\[\Rightarrow U_f (x_f) = - \frac{2}{RTT^2 x_f} \]
TCP/Vegas Dynamics

\[\dot{x} = \frac{x}{RTT^2} \left(\frac{\alpha}{x} - (RTT - RTT_{\text{min}}) \right) \]

\[U'_f (x_f) - p_f \]

\[\Rightarrow U'_f (x_f) = \frac{\alpha}{x} \quad \Rightarrow U_f (x_f) = \alpha \log(x_f) \]
Summary: TCP/Vegas and TCP/Reno

- Pricing signal is queueing delay $T_{queueing}$

\[
X_f = \frac{\alpha}{T_{queueing}}
\]

$U'_f(x_f) = T_{queueing}$

\[\Rightarrow U'_f(x_f) = \frac{\alpha}{x_f} \]

\[\Rightarrow U_f(x_f) = \alpha \log(x_f) \]

- Pricing signal is loss rate p

\[
X_f = \frac{\alpha}{RTT \sqrt{p}}
\]

$U'_f(x_f) = p$

\[\Rightarrow U'_f(x_f) = \left(\frac{\alpha}{x_f RTT} \right)^2 \]

\[\Rightarrow U_f(x_f) = -\frac{\alpha'}{RTT^2 x_f} \]
Summary: Resource Allocation Framework

- Engineering (design):
 - how to determine objective?
 - given objective, how to design effective alg?

- Science/reverse engineering (understand):
 - better understanding of current protocols

- Additional pointers
 - http://www.statslab.cam.ac.uk/~frank/pf/
Outline

- Recap
- Transport congestion control
 - What is congestion
 - The AIMD alg
 - TCP/reno congestion control
 - TCP/Vegas
 - A unifying view of TCP/Reno TCP/Vegas
 - Network wide resource allocation
 - Framework
 - Axiom derivation of network-wide objective function
 - Derive distributed algorithm
 - New protocols
Motivation

TCP/Reno growth function

Grows linearly throughout.
Motivation: Is there a faster way?
TCP BIC Algorithm

- **Setting**
 - $W_{\text{max}} = \text{cwnd size before reduction}$
 - Too big
 - $W_{\text{min}} = \beta W_{\text{max}}$ - just after reduction, where β is multiplicative decrease factor
 - Small

- **Basic idea**
 - binary search between W_{max} and W_{min}
TCP BIC Algorithm: Issues

- Pure binary search (jump from W_{min} to $(W_{\text{max}} + W_{\text{min}})/2$) may be too aggressive
 - Use a large step size S_{max}

- What if you grow above W_{max}?
 - Use binary growth (slow start) to probe more
TCP BIC Algorithm

Packet loss event

- **Additive Increase**
 - $W_{\text{min}} = \beta W_{\text{max}}$
 - $W_{\text{min}} + S_{\text{max}}$
 - $W_{\text{min}} + S_{\text{min}}$

- **Binary Search**
 - midpoint = ($W_{\text{min}} + W_{\text{max}}$)/2
 - midpoint = ($W_{\text{min}} + W_{\text{max}}$)/2
 - midpoint = ($W_{\text{min}} + W_{\text{max}}$)/2

- **Slow Start**
 - $W_{\text{max}} + 2S_{\text{max}}$
 - $W_{\text{max}} + 3S_{\text{max}}$

- **Additive Inc.**
 - Max Probing
 - midpoint = ($W_{\text{min}} + W_{\text{max}}$)/2
 - midpoint = ($W_{\text{min}} + W_{\text{max}}$)/2
 - midpoint = ($W_{\text{min}} + W_{\text{max}}$)/2

- **Event**: Packet loss

- **Equations**:
 - $W_{\text{min}} = \beta W_{\text{max}}$
 - midpoint = ($W_{\text{min}} + W_{\text{max}}$)/2
 - midpoint = ($W_{\text{min}} + W_{\text{max}}$)/2
 - midpoint = ($W_{\text{min}} + W_{\text{max}}$)/2
 - midpoint = ($W_{\text{min}} + W_{\text{max}}$)/2

- **Ranges**:
 - W_{min}
 - $W_{\text{min}} + S_{\text{min}}$
 - $W_{\text{min}} + S_{\text{max}}$
 - W_{max}

- **Criteria**:
 - midpoint - W_{min} < S_{min}
 - midpoint - W_{min} > S_{max}
TCP BIC Algorithm

while (cwnd < Wmax) {
 if ((midpoint - Wmin) > Smax)
 cwnd = cwnd + Smax
 else
 if ((midpoint - Wmin) < Smin)
 cwnd = Wmax
 else
 cwnd = midpoint
 if (no packet loss)
 Wmin = cwnd
 else
 Wmin = β*cwnd
 Wmax = cwnd
 midpoint = (Wmax + Wmin)/2
}
TCP BIC Algorithm: Probe

```plaintext
while (cwnd >= W_{max}){
    if (cwnd < W_{max} + S_{max})
        cwnd = cwnd + S_{min}
    else
        cwnd = cwnd + S_{max}
    if (packet loss)
        W_{min} = \beta \cdot cwnd
        W_{max} = cwnd
}
```
TCP BIC - Summary

Packet loss event

Additive Increase

Binary Search

W_{max}

W_{max}

+ S_{max}

Jump to midpoint

Additive Increase

Binary Increase

Slow Start

Additive Increase

Max Probing

Time

+ S_{min}

+ S_{max}
TCP BIC in Action
TCP BIC Analysis

- Advantages
 - Faster convergence at large gap
 - Slower growth at convergence to avoid timeout

- Issues
 - Still depend on RTT
 - Complex growth function

TCP Cubic

- cwnd = $C(t - K)^3 + W_{max}$, where
 - W_{max} = cwnd before last reduction
 - C scaling factor
 - t is the time elapsed since last window reduction
 - $K = \sqrt[3]{W \beta / C}$
 - β multiplicative decrease factor
TCP CUBIC

Packet loss event

Fast growth upon reduction

Around W_{max}, window growth almost becomes zero

Cubic starts probing for more bandwidth

Max Probing

Steady State Behavior

W_{max}
TCP CUBIC Advantages

- **Good RTT fairness**
 - Growth dominated by t, competing flows have same t after synchronized packet loss

- **Real-time dependent**
 - Similar to BIC but linear increases are time dependent
 - Does not depend on ACK's like TCP/ Reno

- **Scalability**
 - Cubic increases window to W_{max} (or its vicinity) quickly and keeps it there longer
TCP CUBIC Drawbacks

- **Slow Convergence**
 - Flows with higher cwnd are more aggressive initially
 - => Prolonged unfairness between flows

- More details:
Summary

- Many aspects of TCP can be studied, for example TCP under wireless (LTE)
Outline

- Admin and recap
- Network resource allocation framework
 - Network overview
Network Layer

- Transport packet from source to dest.
- Network layer in every host, router

Basic function:
- determine route taken by packets of a flow, and move the packets along the route
Network Layer: Complexity Factors

- **For network providers**
 - efficiency of routes
 - policy control on routes
 - scalability

- **For users: quality of services**
 - guaranteed bandwidth?
 - preservation of inter-packet timing (no jitter)?
 - loss-free delivery?
 - in-order delivery?

- **Interaction between users and network providers**
 - signaling: congestion feedback/resource reservation
Network Layer Quality of Service

<table>
<thead>
<tr>
<th>Network Architecture</th>
<th>Service Model</th>
<th>Guarantees?</th>
<th>Congestion feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bandwidth</td>
<td>Loss</td>
</tr>
<tr>
<td>Internet</td>
<td>best effort</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>ATM</td>
<td>CBR</td>
<td>constant rate</td>
<td>yes</td>
</tr>
<tr>
<td>ATM</td>
<td>VBR</td>
<td>guaranteed rate</td>
<td>yes</td>
</tr>
<tr>
<td>ATM</td>
<td>ABR</td>
<td>guaranteed minimum</td>
<td>no</td>
</tr>
<tr>
<td>ATM</td>
<td>UBR</td>
<td>none</td>
<td>no</td>
</tr>
</tbody>
</table>

- Internet model being extended: Intserv, Diffserv
- multimedia networking

ATM: Asynchronous Transfer Mode; CBR: Constant Bit Rate; V: Variable; A: available; U: User
Current Internet Network Layer

Network layer functions:

- **Routing protocols**
 - path selection
 - e.g., RIP, OSPF, BGP

- **Control protocols**
 - error reporting
 - e.g. ICMP

- **Control protocols**
 - router “signaling”
 - e.g. RSVP

- **Network layer protocol** (e.g., IP)
 - addressing conventions
 - packet format
 - packet handling conventions
Routing: Overview

Routing

goal: determine “good” paths (sequences of routers) thru networks from source to dest.

Graph abstraction for the routing problem:

- graph nodes are routers
- graph edges are physical links
 - links have properties: delay, capacity, $ cost, policy
Routing Design Space

- Routing has a large design space
 - who decides routing?
 - source routing: end hosts make decision
 - network routing: networks make decision
 - how many paths from source s to destination d?
 - multi-path routing
 - single path routing
 - will routing adapt to network traffic demand?
 - adaptive routing
 - static routing
 - ...

- Robustness
- Optimality
- Simplicity
Routing Design Space: User-based, Multipath, Adaptive

- Routing has a large design space
 - who decides routing?
 - source routing: end hosts make decision
 - network routing: networks make decision
 - how many paths from source s to destination d?
 - multi-path routing
 - single path routing
 - will routing adapt to network traffic demand?
 - adaptive routing
 - static routing
 - ...
User Optimal, Multipath, Adaptive

- User optimal: users pick the shortest routes (selfish routing)

```
Flow = .5
```

this flow is envious!

```
Flow = 1
```

Braess’s paradox
Price of Anarchy

For a network with linear latency functions

\[\text{total latency of user (selfish) routing for given traffic demand} \leq \frac{4}{3} \]

\[\text{total latency of network optimal routing for the traffic demand} \]
Price of Anarchy

For any network with continuous, non-decreasing latency functions →

total latency of user (selfish) routing for given traffic demand ≤

total latency of network optimal routing for twice traffic demand
Routing Design Space: Internet

- Routing has a large design space
 - who decides routing?
 - source routing: end hosts make decision
 - network routing: networks make decision
 - (applications such as overlay and p2p are trying to bypass it)
 - how many paths from source s to destination d?
 - multi-path routing
 - single path routing (with small amount of multipath)
 - will routing adapt to network traffic demand?
 - adaptive routing
 - static routing (mostly static; adjust in larger timescale)
 - ...

- Robustness
- Optimality
- Simplicity
Backup Slides
Another Decomposition

- **SYSTEM(U):**
 \[
 \begin{align*}
 & \text{max } \sum_{f \in F} U_f \left(x_f \right) \\
 & \text{subject to } \sum_{f \mid f \text{ uses link } l} x_f \leq c_l \text{ for any link } l \\
 & \text{over } x \geq 0
 \end{align*}
 \]

- **USER}_f(U_f; p_f)**
 \[
 \begin{align*}
 & \text{max } U_f \left(\frac{w_f}{p_f} \right) - w_f \\
 & \text{over } w_f \geq 0
 \end{align*}
 \]

- **NETWORK}(w_f)**
 \[
 \begin{align*}
 & \text{max } \sum_{f \in F} w_f \log_f \left(x_f \right) \\
 & \text{subject to } \sum_{f \mid f \text{ uses link } l} x_f \leq c_l \text{ for any link } l \\
 & \text{over } x \geq 0
 \end{align*}
 \]
Decomposition Theorem

- There exist vectors p, w and x such that
 1. $w_f = p_f x_f$ for $f \in F$
 2. w_f solves $\text{USER}_f(U_f; p_f)$
 3. x solves $\text{NETWORK}(w)$

- The vector x then also solves $\text{SYSTEM}(U)$.