Network Applications:
Multi-Server Request Routing

Y. Richard Yang

http://zoo.cs.yale.edu/classes/cs433/

10/16/2018
Outline

- Admin and recap
- Multiple servers
Assignment Three office hours this week
- Wednesday: 1:30-2:30pm
- Thursday: 1:30-2:30 pm
- Friday: 1:00-2:00 pm

Exam 1 date?
Recap: High-Performance Network Server

- Problem: avoid blocking (so that we can reach bottleneck throughput)
 - Introduce threads, async io

- Problem: limit unlimited thread overhead
 - Thread pool

- Problem: shared variables
 - Synchronization (lock, synchronized)

- Problem: avoid busy-wait
 - Wait/notify; Condition, FSM; asynchronous channel/Future/Handler

- Problem: extensibility/robustness
 - Language support/Design for interfaces

- Problem: system modeling and measurements
 - Queueing analysis, operational analysis
Recap: Designing Load-Balancing Multiple Servers

- **Requirements/goals**
 - naming abstraction, server load balancing, failure detection, access control filtering, priorities/QoS, request locality, transparent caching

- **Components**
 - Service/resource discovery (static, zookeeper, etc., consul)
 - Health/state monitoring of servers/connecting networks
 - Load balancing mechanisms/algorithm
 - Also called request routing
Recap: Load-Balancing/Request Routing using DNS

Potential basic techniques (Akamai design)

- One-level of indirection (aliasing, cname), e.g., dig results:
 - cdn.cnn.com. 56 IN CNAME ion-ma.turner.com.edgekey.net
 - ion-ma.turner.com.edgekey.net. 556 IN CNAME e12596.dscj.akamaiedge.net.

- Hierarchy (multiple levels), e.g.,
 - first level: query dscj of name server akamaiedge.net. to decide region according to (dscj, clientIP)
 - next level: query e12596 of region name server to choose specific server
Experimental Study of Akamai Load Balancing

Methodology

- 2-months long measurement
- 140 PlanetLab nodes (clients)
 - 50 US and Canada, 35 Europe, 18 Asia, 8 South America, the rest randomly scattered
- Every 20 sec, each client queries an appropriate CNAME for Yahoo, CNN, Fox News, NY Times, etc.

See http://www.aqualab.cs.northwestern.edu/publications/Ajsu06DBA.pdf
Server Pool: to Yahoo

Target: a943.x.a.yimg.com (Yahoo)

Client 1: Berkeley

Client 2: Purdue

Day

Night

Web replica IDs

Timestamp

DNS mapping

Web replica IDs

Timestamp

DNS mapping
Server Diversity for Yahoo

Majority of PL nodes see between 10 and 50 Akamai edge-servers.

Nodes far away from Akamai hot-spots.
Load Balancing Dynamics

![Graph showing CDF (prob < X) vs. Inter-redirection time (s) with lines for Berkeley to Yahoo, Korea to Yahoo, and Brazil to Yahoo.]
Redirection Effectiveness: Measurement Methodology

Akamai Low-Level DNS Server

Planet Lab Node

9 Best Akamai Replica Servers
Do redirections reveal network conditions?

- Rank = r1+r2-1
 - 16 means perfect correlation

MIT and Amsterdam are excellent

Brazil is poor

<table>
<thead>
<tr>
<th>Rank of Akamai's selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

Percentage of time Akamai's selection is better or equal to rank
Facebook DNS Load Direction

- A system named Cartographer (written in Python) processes measurement data and configures the DNS maps of individual DNS servers (open source tinydns)

Amazon AWS Route 53 service

- https://aws.amazon.com/route53/
Discussion

- Advantages and disadvantages of request routing using DNS
Outline

- Admin and recap
- Request routing to multiple servers
 - overview
 - DNS request routing
 - Network request routing
Network (L4) Request Routing: API

- A single service IP address (naming abstraction) can be used for a cluster of (physical) servers
 - Such a single IP is called a virtual IP address (VIP)

```bash
ipvsadm -A -t 192.168.0.1:80 -s rr
ipvsadm -a -t 192.168.0.1:80 -r 172.16.0.1:80 -m
ipvsadm -a -t 192.168.0.1:80 -r 172.16.0.2:80 -m
```
Network Load Balancing (NLB): Basic Structure

Problem: How can the LB send a request to chosen real server i?
Each network interface card listens to an assigned MAC address.

To send to a device with a given IP, the sender:

- first translates the IP of the destination to its MAC (device) address
 - The translation is done by the Address Resolution Protocol (ARP)
- then sends the packet with the given MAC address
 - this is called layer 2 forwarding
ARP Protocol

ARP is “plug-and-play”:
- nodes create their ARP tables without intervention from net administrator

A broadcast protocol:
- Client broadcasts query frame, containing queried IP address
 - all machines on LAN receive ARP query
- Node with queried IP receives ARP frame, replies its MAC address
Demo: ARP

- ifconfig -a
 - to show all interfaces and their MAC addresses

- arp -a
 - show the binding between IP address and MAC address

- Wireshark to capture arp traffic
ARP Format and Features

- Query: Layer 2 (Link layer) broadcast: destination 01:00:00:00:00:00 to be received by all hosts at the same local network
- Response: Host with the MAC returns its MAC if it has the query IP
- Gratuitous ARP: A host sends this message to update other devices if it changes MAC
Network Load Balancing (NLB): Basic Structure

Problem of the basic structure?
Problem

- Although the request router can send to a real server, the packet has VIP as destination address, but a real server may use its own RIP
 - if NLB just forwards the packet from client to a real server, the real server drops the packet
 - reply from real server to client has real server IP as source -> client will drop the packet

<table>
<thead>
<tr>
<th>State: Listening</th>
<th>State: Established</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address: {*:6789, :}</td>
<td>Address: {128.36.232.5:*:6789, 198.69.10.10.1500}</td>
</tr>
<tr>
<td>Completed connection queue: C1; C2</td>
<td></td>
</tr>
</tbody>
</table>
Discussion: How May You Address the Issue?
Outline

- Admin and recap
- Request routing to multiple servers
 - overview
 - DNS request routing
 - Network request routing
 - Overview of structure and issue
 - Routing direction
 - NAT
Solution 1: Network Address Translation (NAT)

- Assumption:
 - Real servers use RIPs

- Solution: NLB does rewriting/translation

- Thus, the NLB is similar to a typical NAT gateway with an additional scheduling function
Example Virtual Server via NAT

Table 1: an example of virtual server rules

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Virtual IP Address</th>
<th>Port</th>
<th>Real IP Address</th>
<th>Port</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>202.103.106.5</td>
<td>80</td>
<td>172.16.0.2</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>172.16.0.3</td>
<td>8000</td>
<td>2</td>
</tr>
<tr>
<td>TCP</td>
<td>202.103.106.5</td>
<td>21</td>
<td>172.16.0.3</td>
<td>21</td>
<td>1</td>
</tr>
</tbody>
</table>
NLB/NAT Flow

A request packet arrives from a client with a source IP of 206.183.42.40 and a destination IP of 192.168.0.100. It is directed to an active load balancer with a VIP of 192.168.0.100 and a RIP of 192.168.0.201. The active load balancer directs the request to Server 1, which has a RIP of 192.168.0.205. There is also a backup load balancer connected to Server n, which has a RIP of 192.168.0.206. The primary and backup heartbeat connections are shown between the load balancers and the servers.
NLB/NAT Flow
NLB/NAT Advantages and Disadvantages

- **Advantages:**
 - Naming abstraction: A single public IP address to be realized, transparently, by a set of real servers with private IP addresses
 - Real servers need no change and are not aware of load balancing

- **Problems**
 - The network load balancer must be on the critical path and hence may become the bottleneck due to load to rewrite request and response packets
 - Typically, rewriting responses has more load because there are more response packets
Outline

- Admin and recap
- Request routing to multiple servers
 - Overview
 - DNS request routing
 - Network request routing
 - Overview of structure and issue
 - Routing direction
 - NAT
 - Direct Server Return (DSR)
NLB with Direct Server Return

Direct server return

Each real server uses VIP as its IP address
NLB/DSR: Working Case

- Router broadcasts ARP broadcast query: who has VIP?
- ARP reply from NLB: I have VIP; my MAC is MAC_{NLB}
- Data packet from R to NLB: destination MAC = MAC_{NLB}
- How may the NLB send the request to a real server?
ARP race condition:
- When router R gets a packet with dest. address VIP, it broadcasts an Address Resolution Protocol (ARP) request: who has VIP?
- One of the real servers may reply before NLB
NLB via Direct DSR

- **Solution:** various “hacks”
 - Configure real server with a non-ARPing, loopback alias interface with the virtual IP address, and the load balancer has an interface configured with the virtual IP address to accept incoming packets.

- The workflow of NLB/DSR is similar to that of NLB/NAT:
 - the load balancer directly routes a packet to the selected server
 - When the server receives the forwarded packet, the server determines that the packet is for the address on its loopback alias interface, processes the request, and finally returns the result directly to the user
NLB/DSR Advantages and Disadvantages

- **Advantages:**
 - Real servers send response packets to clients directly, avoiding NLB as bottleneck

- **Disadvantages:**
 - Servers must be configured specially (e.g., a non-arp alias interface for the VIP)
A major remaining problem is that the NLB becomes a single point of failure (SPOF).
Outline

- Admin and recap
- Request routing to multiple servers
 - overview
 - DNS request routing
 - Network request routing
 - Overview of structure and issue
 - Routing direction
 - NAT
 - Direct Server Return (DSR)
 - Director reliability
Fully Distributed Directors: Microsoft NLB

- No dedicated load balancer at all
- All servers in the cluster receive all packets
- All servers within the cluster simultaneously run a mapping algorithm to determine which server should handle the packet. Those servers not required to service the packet simply discard it.
 - Mapping (ranking) algorithm: computing the “winning” server according to host priorities, multicast or unicast mode, port rules, affinity, load percentage distribution, client IP address, client port number, other internal load information

Discussion

- Advantages and issues of fully distributed NLB
Active/Passive Request Routers: HAProxy using VRRP [RFC3768]

Configuration on LB1/LB2

```bash
listen webfarm 192.168.1.1:80
mode http
balance roundrobin
cookie JSESSIONID prefix
option httpclose
option forwardfor
option httpchk HEAD /index.html HTTP/1.0
server webA 192.168.1.11:80 cookie A check
server webB 192.168.1.12:80 cookie B check
server webC 192.168.1.13:80 cookie C check
server webD 192.168.1.14:80 cookie D check
```

Configuration keepalived LB1/LB2

```bash
vrrp_script chk_haproxy {
  script "killall -0 haproxy"
  interval 2
  weight 2
}

vrrp_instance VI_1 {
  interface eth0
  state MASTER
  virtual_router_id 51
  priority 101
  virtual_ipaddress {
    192.168.1.1
  }
  track_script {
    chk_haproxy
  }
}
```

https://www.haproxy.org/download/1.2/doc/architecture.txt
Virtual Router Redundancy Protocol: Basic Ideas

- Virtual router
 - Specified by a virtual router identifier (VRID) and a set of associated IP addresses
 - Each virtual router ID has a corresponding (virtual) MAC: 00-00-5E-00-01-[VRID]

- Leader election among the physical routers to select a single master, who
 - Owns the given IPs of the virtual router
 - Receives and forwards packets for the IPes
Virtual Router Redundancy Protocol: Protocol and Msgs

- Periodical, multicast announcements to IP address 224.0.0.18 w/ IP protocol number 12
VRRP Sample Configuration

Legend:

--- = Ethernet, Token Ring, or FDDI
H = Host computer
MR = Master Router
BR = Backup Router
* = IP Address
(IP) = default router for hosts
Discussion

- Advantages and issues of active/passive request routing