Network Transport Layer:
TCP/Reno Analysis, TCP Cubic, TCP/Vegas

Y. Richard Yang

http://zoo.cs.yale.edu/classes/cs433/

11/13/2018
Programming assignment 4 updated deadlines

- Part 1: Discussion with instructor or TF checkpoint: Nov. 13; Code checkpoint: 11:55 pm, Nov. 15, 2018
- Part 2: Design discussion with instructor or TF checkpoint: Nov. 27; Complete code and report due: 1:30 pm, Nov. 29, 2018.
Recap: Transport Reliability Design

- Basic structure of reliability protocol: sliding window protocols, connection management
- Basic analytical technique: execution traces; joint sender/receiver/channel state machine; state invariants
- TCP as an example implementation
 - Hybrid of GBN and SR
 - Full duplex transport
 - Multiple optimizations/adaptation mechanisms
 - Fast retransmit
 - Adaptive RTO
 - mean + variation
 - Adaptive window size (Congestion control)
Recap: Transport Congestion Control Design

- What is congestion control
 - Too high rate can lead to unnecessary long delays, collapse due to waste of resources (e.g., large number of retransmissions, zombie packets)

- Desired properties of congestion control alg
 - distributed algorithm to achieve fairness and efficiency

- Linear control model and requirement

\[
x_i(t+1) = \begin{cases}
 a_I + b_I x_i(t) & \text{if } d(t) = \text{no cong.} \\
 a_D + b_D x_i(t) & \text{if } d(t) = \text{cong.}
\end{cases}
\]
congestion

\[x_i(t+1) = \begin{cases}
 a_I + b_I x_i(t) & \text{if } d(t) = \text{no cong.} \\
 a_D + b_D x_i(t) & \text{if } d(t) = \text{cong.}
\end{cases} \]
no-congestion

\[
x_i(t+1) = \begin{cases}
 a_t + b_t x_i(t) & \text{if } d(t) = \text{no cong.} \\
 a_D + b_D x_i(t) & \text{if } d(t) = \text{cong.}
\end{cases}
\]
Recap: Why AIMD Works by Considering State Transition Trace

fairness line: \(x_1 = x_2 \)

efficiency line: \(x_1 + x_2 = C \)

overload

underload
Consider the difference or ratio of the rates of two flows

- AIAD
- MIMD
- MIAD
- AIMD
Recap: Realizing A(M)IMD: TCP/Reno

Initially:
\[
\begin{align*}
cwnd &= 1; \\
\text{ssthresh} &= \text{infinite (e.g., 64K)};
\end{align*}
\]

For each newly ACKed segment:
\[
\begin{align*}
\text{if} \ (cwnd < \text{ssthresh}) & \quad \text{// slow start: MI} \\
\quad cwnd &= cwnd + 1; \\
\text{else} & \quad \text{// congestion avoidance; AI} \\
\quad cwnd &= cwnd + 1/cwnd;
\end{align*}
\]

Triple-duplicate ACKs:
\[
\begin{align*}
\text{// MD} \\
\quad cwnd &= \text{ssthresh} = cwnd/2;
\end{align*}
\]

Timeout:
\[
\begin{align*}
\text{ssthresh} &= cwnd/2; \quad \text{// reset} \\
\quad cwnd &= 1; \\
\end{align*}
\]

(if already timed out, double timeout value; this is called exponential backoff)
Recap: TCP/Reno: Big Picture

TD: Triple duplicate acknowledgements
TO: Timeout
Outline

- Admin and recap
- Transport congestion control/resource allocation
 - what is congestion (cost of congestion)
 - basic congestion control alg.
 - TCP/reno congestion control
 - design
 - analysis
Objective

- To understand the throughput of TCP/Reno as a function of RTT (RTT), loss rate (p) and packet size
- To better understand system dynamics
- We will analyze TCP/Reno under two different setups
TCP/Reno Throughput Analysis

- mean packet loss rate: \(p \); mean round-trip time: RTT, packet size: \(S \)
- Consider only the congestion avoidance mode (long flows such as large files)
- Assume no timeout
- Assume mean window size is \(W_m \) segments, each with \(S \) bytes sent in one RTT:

\[
\text{Throughput} = \frac{W_m \cdot S}{RTT} \text{ bytes/sec}
\]
Outline

- Admin and recap
- Transport congestion control/resource allocation
 - what is congestion (cost of congestion)
 - basic congestion control alg.
 - TCP/reno congestion control
 - design
 - analysis
 - small fish in a big pond: loss rate given from the environment
TCP/Reno Throughput Modeling

\[
\Delta W = \begin{cases}
\frac{1}{W} & \text{if the packet is not lost} \\
-\frac{W}{2} & \text{if packet is lost}
\end{cases}
\]

mean of \(\Delta W = (1 - p) \frac{1}{W} + p(-\frac{W}{2}) = 0 \)

\[\Rightarrow \text{mean of } W = \sqrt{\frac{2(1-p)}{p}} \approx \frac{1.4}{\sqrt{p}} \text{, when } p \text{ is small} \]

\[\Rightarrow \text{throughput } \approx \frac{1.4S}{RTT \sqrt{p}} \text{, when } p \text{ is small} \]

This is called the TCP throughput sqrt of loss rate law.
State of art network link can reach 100 Gbps. Assume packet size 1250 bytes, RTT 100 ms, what is the highest packet loss rate to still reach 100 Gbps?
Outline

- Admin and recap
- Transport congestion control/resource allocation
 - what is congestion (cost of congestion)
 - basic congestion control alg.
 - TCP/reno congestion control
 - design
 - analysis
 - small fish in a big pond: loss rate given from the environment
 ➢ big fish in small pond: growth causes losses
TCP/Reno Throughput Modeling: Relating W with Loss Rate p

Total packets sent per cycle = $(W/2 + W)/2 \times W/2 = 3W^2/8$

Assume one loss per cycle => $p = 1/(3W^2/8) = 8/(3W^2)$

$$\Rightarrow W = \frac{\sqrt{8/3}}{\sqrt{p}} = \frac{1.6}{\sqrt{p}}$$

$$\Rightarrow \text{throughput} = \frac{S}{RTT} \times \frac{3}{4} \times \frac{1.6}{\sqrt{p}} = \frac{1.2S}{RTT \sqrt{p}}$$
A Puzzle: cwnd and Rate of a TCP Session

Question: cwnd fluctuates widely (i.e., cut to half); how can the sending rate stay relatively smooth?
TCP/Reno Queueing Dynamics

If the buffer at the bottleneck is large enough, the buffer is never empty (not idle), during the cut-to-half to “grow-back” process.

Offline Exercise: How big should the buffer be to achieve full utilization?
If the buffer size at the bottleneck link is very small, what is the link utilization?
Exercise: Small Buffer

- Assume
 - BW: 10 G
 - RTT: 100 ms
 - Packet: 1250 bytes
 - BDP (full window size): 100,000 packets
- A loss can cut window size from 100,000 to 50,000 packets
- To fully grow back
 - Need 50,000 RTTs => 5000 seconds, 1.4 hours
Assume a generic AIMD alg: reduce to βW after each loss event. What is the avg link utilization when buffer is small?

If the objective is to maximize link utilization, pick large or small β? Why not pick β maximizing utilization?
Outline

- Admin and recap
- Transport congestion control/resource allocation
 - what is congestion (cost of congestion)
 - basic congestion control alg.
 - TCP/Reno congestion control
 - TCP Cubic
TCP Cubic

- Designed in 2008 by Rhee’ group
- Default for Linux
- Most sockets in MAC appear to use cubic as well
 - `sysctl -a`
 - If you want to see some TCP parameters by a real OS (grep `inet.tcp`)
 - grep reno cubic
TCP Cubic Goals

- Improve TCP efficiency over fast, long-distance links with limited buffer

- TCP friendliness: Follows TCP if TCP gives higher rate
Basic Idea I

Minimize waste/effective ratio to increase efficiency

Not too small beta to yield for new competition/fairness
where C is a scaling factor, t is the elapsed time from the last window reduction, and β is a constant multiplication decrease factor.
Basic Idea II: TCP Friendly Rate with Generic β

Packets per cycle:
$$\frac{\beta W + W}{2} \cdot \frac{(1-\beta)W}{\alpha} = \frac{(1-\beta)(1+\beta)}{2\alpha} W^2$$

Assume one loss per cycle:
$$p = \frac{2\alpha}{(1-\beta)(1+\beta)w^2} \quad w = \frac{2\alpha}{\sqrt{(1-\beta)(1+\beta)p}}$$

$$tput = \frac{W_m S}{RTT} = \frac{S}{RTT} \cdot \frac{(1+\beta)W}{2} = \frac{S}{RTT} \sqrt{\frac{\alpha(1+\beta)}{2(1-\beta)p}}$$

TCP friendly: $\alpha = 3 \frac{1-\beta}{1+\beta}$
Cubic High-Level Structure

If (received ACK && state == cong avoid)
 - Compute \(W_{cubic}(t) \)
 - Compute \(W_{TCP}(t) \) (form?)
 - Pick the larger one
(a) CUBIC window curves.

(b) Throughput of two CUBIC flows.
Outline

- Admin and recap
- Transport congestion control/resource allocation
 - What is congestion (cost of congestion)
 - Basic congestion control alg.
 - TCP/Reno congestion control
 - TCP Cubic
 - TCP/Vegas
TCP/Vegas (Brakmo & Peterson 1994)

- Idea: try to detect congestion by *delay before loss*
- Objective: not to overflow the buffer; instead, try to maintain a *constant* number of packets in the bottleneck queue
TCP/Vegas: Key Question

- How to estimate the number of packets queued in the bottleneck queue(s)?
Recall: Little’s Law

- For any system with no or (low) loss.
- Assume
 - mean arrival rate X, mean service time T, and mean number of requests in the system W
- Then relationship between W, X, and T:

$$W = XT$$
Estimating Number of Packets in the Queue
TCP/Vegas CA algorithm

\[T = T_{\text{prop}} + T_{\text{queueing}} \]

Applying Little's Law:

\[x_{\text{vegas}} \cdot T = x_{\text{vegas}} \cdot T_{\text{prop}} + x_{\text{vegas}} \cdot T_{\text{queueing}}, \]

where \(x_{\text{vegas}} = \frac{W}{T} \) is the sending rate

Then number of packets in the queue is

\[x_{\text{vegas}} \cdot T_{\text{queueing}} = x_{\text{vegas}} \cdot T - x_{\text{vegas}} \cdot T_{\text{prop}} \]

\[= W - \frac{W}{T} \cdot T_{\text{prop}} \quad (\text{value?}) \]
TCP/Vegas CA algorithm

Maintain a constant number of packets in the bottleneck buffer.

For every RTT,

\[
\begin{align*}
\text{if } & W - \frac{W}{RTT} \cdot RTT_{min} < \alpha \text{ then } W++ \\
\text{if } & W - \frac{W}{RTT} \cdot RTT_{min} > \alpha \text{ then } W--
\end{align*}
\]

For every loss,

\[w := \frac{w}{2}\]
Discussions

- If two flows, one TCP Vegas and one TCP reno run together, how may bandwidth partitioned be among them?

- What are some other key challenges for TCP/Vegas?