Wireless PHY: Modulation and Demodulation

Y. Richard Yang

09/11/2012
Outline

- Admin and recap
- Amplitude demodulation
- Digital modulation
Admin

- Assignment 1 posted
Recap: Modulation

- Objective
 - Frequency assignment

- Basic concepts
 - the information source (also called baseband)
 - carrier
 - modulated signal
Recap: Amplitude Modulation (AM)

- **Block diagram**

 \[x(t) \xrightarrow{m} x \xrightarrow{+} x_{AM}(t) = A_c [1 + mx(t)] \cos \omega_c t \]

- **Time domain**

- **Frequency domain**

 \[X(f) \xrightarrow{} X_{AM}(f) \]
Recap: Demod of AM

- Design option 1: multiply modulated signal by e^{-jfc_t}, and then LPF

- Design option 2: quadrature sampling
Example: Scanner

- Setting: a scanner scans 128KHz blocks of AM radio and saves each block to a file.
- For the example file
 - During scan, $f_c = 710K$
 - LPF = 128K (one each side)
Exercise: Scanner

- **Requirements**
 - Scan the block in a saved file to find radio stations and tune to each station (each AM station has 10 KHz)
 - Audio device requires 48K sample rate for playback
Remaining Hole: How to Design LPF

- Frequency domain view

[Diagram showing frequency response with -B and B on the frequency axis]
Design Option 1

This is essentially how image compression works.

Problem(s) of Design Option 1?
Design Option 2: Impulse Response Filters

- GNU software radio implements filtering using:
 - Finite Impulse Response (FIR) filters
 - Infinite Impulse Response (IIR) Filters
 - FIR filters are more commonly used

- FIR/IIR is essentially online, streaming algorithms

- They are used in networks/communications/vision/robotics...
FIR Filter

- An N-th order FIR filter h is defined by an array of $N+1$ numbers:

$$h = [h_0, h_2, \ldots, h_N]$$

- They are often stored backward (flipped):

 $\begin{array}{c}
 h_N \\
 \vdots \\
 h_2 \quad h_1 \quad h_0
 \end{array}$

- Assume input data stream is $x_0, x_1, \ldots,$
FIR Filter

compute $y[n]$: $y_n = x_n h_0 + x_{n-1} h_1 + \ldots + x_{n-N} h_N$

$= \sum_{i=0}^{N} x_{n-i} h_i$
FIR Filter

\[y[n+1] = h_0 x[n] + h_1 x[n-1] + h_2 x[n-2] + h_3 x[n-3] \]
FIR Filter

\[y_n = x_n h_0 + x_{n-1} h_1 + \ldots + x_{n-N} h_N \]

is also called convolution between \(x \) (as a vector) and \(h \) (as a vector), denoted as

\[y_n = x_n * h_n \]
Key Question Using h to Implement LPF

❖ Q:
 ❖ How to determine h?

❖ Approach:
 ❖ Understand the effects of $y=g*h$ in the frequency domain
$g \ast h$ in the Continuous Time Domain

- Remember that we consider x as samples of time domain function $g(t)$ on $[0, 1]$ and (repeat in other intervals)
- We also consider h as samples of time domain function $h(t)$ on $[0, 1]$ (and repeat in other intervals)

\[
y(t) = \int_{0}^{1} h(\tau)g(t - \tau) \, d\tau
\]

for $(i = 0; i < N; i++)$

\[
y[t] += h[i] \ast g[t-i];
\]
Visualizing $g \ast h$

$g(t)$

$h(t)$

0 \rightarrow T \rightarrow 0

\rightarrow time
Visualizing $g \ast h$

$g(t)$

$h(0)$

t

$0 \rightarrow T$

$T \rightarrow 0$

\ast

$g(t)$
Fourier Series of $y=g*h$

$$y(t) = \int_{0}^{1} h(\tau)g(t-\tau)\,d\tau$$

$$Y[k] = \int_{0}^{1} y(t)e^{j2\pi kt}\,dt$$

$$= \int_{0}^{1} \left[\int_{0}^{1} h(\tau)g(t-\tau)\,d\tau \right] e^{j2\pi kt}\,dt$$

$$= \int_{0}^{1} \left[\int_{0}^{1} h(\tau)g(t-\tau)e^{j2\pi kt}\,d\tau \right] dt$$
Fubini’s Theorem

\[\int_A \left(\int_B f(x, y) \, dy \right) \, dx = \int_B \left(\int_A f(x, y) \, dx \right) \, dy = \int_{A \times B} f(x, y) \, d(x, y), \]

- In English, you can integrate
 - first along \(y \) and then along \(x \)
 - first along \(x \) and then along \(y \)
 - at \((x, y) \) grid

They give the same result

See \url{http://en.wikipedia.org/wiki/Fubini's_theorem}
Fourier Series of \(y=g\ast h \)

\[
y(t) = \int_0^1 h(\tau)g(t-\tau)\,d\tau
\]

\[
Y[k] = \int_0^1 \left[\int_0^1 h(\tau)g(t-\tau)e^{j2\pi kt}\,d\tau \right]dt
\]

\[
= \int_0^1 \left[\int_0^1 h(\tau)g(t-\tau)e^{j2\pi kt} \,dt \right]d\tau
\]

\[
= \int_0^1 h(\tau) \left[\int_0^1 g(t-\tau)e^{j2\pi kt} \,dt \right]d\tau
\]

\[
= \int_0^1 h(\tau)e^{j2\pi k\tau} \left[\int_0^1 g(t-\tau)e^{j2\pi k(t-\tau)} \,dt \right]d\tau
\]

\[
= \int_0^1 h(\tau)e^{j2\pi k\tau} G[k] \,d\tau
\]

\[
= G[k]H[k]
\]
Summary of Progress So Far

\[y = g * h \Rightarrow Y[k] = G[k] H[k] \]

In the case of Fourier Transform,
\[y = g * h \Rightarrow Y[f] = G[f] H[f] \]

is called the Convolution Theorem, an important theorem.
Applying Convolution Theorem to Design LPF

- Choose $h()$ so that
 - $H()$ is close to a rectangle shape
 - $h()$ has a low order (why?)
The h() is often related with the sinc(t) = sin(t)/t function.

\[\int_{-\infty}^{\infty} \frac{\sin(\pi t)}{\pi t} e^{-j2\pi ft} = rect(f) \]
FIR Design in Practice

- **Compute h**
 - MATLAB or other design software
 - GNU Software radio: optfir (optimal filter design)
 - GNU Software radio: firdes (using a method called windowing method)

- **Implement filter with given h**
 - freq_xlating_fir_filter_ccf or
 - fir_filter_ccf
LPF Design Example

- Design a LPF to pass signal at 1 KHz and block at 2 KHz
#create the channel filter
coefficients
chan_taps = optfir.low_pass(
 1.0, #Filter gain
 48000, #Sample Rate
 1500, #one sided mod BW (passband edge)
 1800, #one sided channel BW (stopband edge)
 0.1, #Passband ripple
 60) #Stopband Attenuation in dB
print "Channel filter taps: ", len(chan_taps)

#creates the channel filter with the coef found
chan = gr.freq_xlating_fir_filter_ccf(
 1, # Decimation rate
 chan_taps, #coefficients
 0, #Offset frequency - could be used to shift
 48e3) #incoming sample rate
Outline

- Recap
- Amplitude demodulation
 - frequency shifting
 - low pass filter
- Digital modulation
Modulation

- Modulation of digital signals also known as **Shift Keying**
- Amplitude Shift Keying (ASK):
 - vary carrier amp. according to data
- Frequency Shift Keying (FSK)
 - vary carrier freq. according to bit value
- Phase Shift Keying (PSK)
 - vary carrier freq. according to data
Phase Shift Keying: BPSK

- **BPSK (Binary Phase Shift Keying):**
 - bit value 1: cosine wave \(\cos(2\pi f_c t) \)
 - bit value 0: inverted cosine wave \(\cos(2\pi f_c t + \pi) \)
 - very simple PSK

- **Properties**
 - robust, used e.g. in satellite systems

![Diagram of BPSK](image)

- One bit time \(T \)
- Q vs. I axis
Phase Shift Keying: QPSK

- QPSK (Quadrature Phase Shift Keying):
 - 2 bits coded at a time
 - we call the two bits as one symbol
 - symbol determines shift of cosine wave
 - often also transmission of relative, not absolute phase shift: DQPSK - Differential QPSK
Quadrature Amplitude Modulation

- Quadrature Amplitude Modulation (QAM): combines amplitude and phase modulation
- It is possible to code n bits using one symbol
 - 2^n discrete levels

Example: 16-QAM (4 bits = 1 symbol)
- Symbols 0011 and 0001 have the same phase ϕ, but different amplitude a. 0000 and 1000 have same amplitude but different phase.
Generic Representation of Digital Keying (Modulation)

- Sender sends symbols one-by-one
- M signaling functions $g_1(t)$, $g_2(t)$, ..., $g_M(t)$, each has a duration of symbol time T
- Each value of a symbol has a signaling function
Exercise: $g_i()$ for BPSK

1:
- $g_1(t) = \cos(2\pi f_c t) \ t \text{ in } [0, T]$

0:
- $g_0(t) = -\cos(2\pi f_c t) \ t \text{ in } [0, T]$

Are the two signaling functions independent?

- Hint: think of the samples forming a vector, if it helps, in linear algebra
- Ans: No. $g_1(t) = -g_0(t)$

\[
\begin{array}{c|c}
\text{t} & g_0(t) \\
\hline
-1 & g_1(t) \\
1 & \cos(2\pi f_c t) [0, T]
\end{array}
\]
Exercise: Signaling Functions $g_i()$ for QPSK

- **11:**
 - $\cos(2\pi f_c t + \pi/4) \ t \in [0, T]$

- **10:**
 - $\cos(2\pi f_c t + 3\pi/4) \ t \in [0, T]$

- **00:**
 - $\cos(2\pi f_c t - 3\pi/4) \ t \in [0, T]$

- **01:**
 - $\cos(2\pi f_c t - \pi/4) \ t \in [0, T]$

Are the four signaling functions independent?
- Ans: No. They are all linear combinations of $\sin(2\pi f_c t)$ and $\cos(2\pi f_c t)$.
QPSK Signaling Functions as Sum of $\cos(2\pi f_c t)$, $\sin(2\pi f_c t)$

- **11**: $\cos(\pi/4 + 2\pi f_c t)$ t in $[0, T]$
 \[\rightarrow \cos(\pi/4) \cos(2\pi f_c t) + \sin(\pi/4) \sin(2\pi f_c t) \]

- **10**: $\cos(3\pi/4 + 2\pi f_c t)$ t in $[0, T]$
 \[\rightarrow \cos(3\pi/4) \cos(2\pi f_c t) + \sin(3\pi/4) \sin(2\pi f_c t) \]

- **00**: $\cos(-3\pi/4 + 2\pi f_c t)$ t in $[0, T]$
 \[\rightarrow \cos(3\pi/4) \cos(2\pi f_c t) + \sin(3\pi/4) \sin(2\pi f_c t) \]

- **01**: $\cos(-\pi/4 + 2\pi f_c t)$ t in $[0, T]$
 \[\rightarrow \cos(\pi/4) \cos(2\pi f_c t) + \sin(\pi/4) \sin(2\pi f_c t) \]

We call $\sin(2\pi f_c t)$ and $\cos(2\pi f_c t)$ the bases.
Outline

- Recap
- Amplitude demodulation
 - frequency shifting
 - low pass filter
- Digital modulation
 - modulation
 - demodulation
Key Question: How does the Receiver Detect Which $g_i()$ is Sent?

- Assume synchronized (i.e., the receiver knows the symbol boundary).
Starting Point

- Considered a simple setting: sender uses a single signaling function $g()$, and can have two actions
 - send $g()$ or
 - nothing (send 0)

- How does receiver use the received sequence $x(t)$ in $[0, T]$ to detect if sends $g()$ or nothing?
Design Option 1

- Sample at a few time points (features) to check
- Issue
 - Not use all data points, and less robust to noise
Design Option 2

- Streaming algorithm, using all data points in [0, T]
 - As each sample x_i comes in, multiply it by a factor h_{T-i-1} and accumulate to a sum y

![Diagram showing streaming algorithm]

- At time T, makes a decision based on the accumulated sum at time T: $y[T]$
Example Streaming (Convolution/Correlation):

- Assume incoming x is a rectangular pulse (in baseband) and h is also a rectangular pulse.

- A gif animation:
 - redline $g()$: the sliding filter $h(t)$
 - blue line $f()$: the input $x()$

Determining the Best h

$$y = (g + w) * h = g * h + w * h = g_o + n$$

where w is noise, $g_o(t) = g * h$

$$n = w * h$$

Design objective: maximize peak pulse signal-to-noise ratio

$$\eta = \frac{|g_o(T)|^2}{E[n^2(T)]} = \frac{\text{instantaneous signal power}}{\text{average noise power}}$$
Determining the Best h

Assume Gaussian noise, one can derive

$$E[n^2(T)] = \frac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 \, df$$

Using Fourier Transform and Convolution Theorem:

$$g_o(T) = \int_{-\infty}^{\infty} G_0(f) e^{j2\pi fT} \, df = \int_{-\infty}^{\infty} G(f) H(f) e^{j2\pi fT} \, df$$

$$\eta = \left| \int_{-\infty}^{\infty} G(f) H(f) e^{j2\pi fT} \, df \right|^2$$

$$\eta = \frac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 \, df$$
Determining the Best h

Apply Schwartz inequality

$$\eta = \frac{\left| \int_{-\infty}^{\infty} G(f)H(f)e^{j2\pi fT} \, df \right|^2}{\frac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 \, df}$$

$$\int_{-\infty}^{\infty} x(f)y(f) \, df \leq \int_{-\infty}^{\infty} |y(f)|^2 \, df \quad \text{equal iff} \quad x(f) = ky^*(f)$$

By considering

$$x(f) = H(f)$$
$$y(f) = G(f)e^{j2\pi Tf}$$

$$H_{opt}(f) = k[G(f)e^{j2\pi fT}]^*$$
$$= kG^*(f)e^{-j2\pi fT}$$
Determining the Best h

$$H_{opt}(f) = kG * (f)e^{-j2\pi f T}$$

$$h_{opt}(t) = \int_{f=-\infty}^{\infty} H_{opt}(f)e^{j2\pi ft} = \int_{f=-\infty}^{\infty} kG * (f)e^{-j2\pi f T} e^{j2\pi ft}$$

$$= \int_{f=-\infty}^{\infty} kG(-f)e^{-j2\pi f T} e^{j2\pi ft}$$

$$= \int_{f=-\infty}^{\infty} kG(-f)e^{-j2\pi f (T-t)}$$

$$h_{opt}(t) = kg(T - t)$$

$$= \int_{f=-\infty}^{\infty} kG(f)e^{j2\pi f (T-t)}$$

$$\eta = \frac{\left| \int_{-\infty}^{\infty} G(f)H(f)e^{j2\pi f T} df \right|^2}{\frac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 df}$$
Determining Best h to Use

\[h_{opt}(t) = kg(T - t) \]
Matched Filter Decision

\[h_{opt}(t) = kg(T - t) \]

is called Matched filter.

Example

\[h_{opt}(t) = kg(T - t) \]

\[g_o(t) = g(t) \ast h(t) \]
Backup Slides
Modulation