
An Introduction to caret

Max Kuhn

max.kuhn@pfizer.com
Pfizer Global R&D

Nonclinical Statistics
Groton, CT

April 8, 2008

The caret Package

The caret package, short for Classification And REgression Training,
contains numerous tools for developing predictive models using the rich set
of models available in R. The package focuses on

simplifying model training and tuning across a wide variety of
modeling techniques

pre–processing training data

calculating variable importance

model visualizations

The package is available at the Comprehensive R Archive Network
(CRAN) at http://cran.r-project.org/. caret depends on over 25 other
packages, although many of these are listed as “suggested” packages are
are not automatically loaded when caret is started. Packages are loaded
individually when a model is trained or predicted.

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 2 / 24

http://cran.r-project.org/

An Example

Kazius (2005) investigated using chemical structure to predict
mutagenicity (the increase of mutations due to the damage to genetic
material).

There were 4,337 compounds included in the data set with a mutagenicity
rate of 55.3%. Using these compounds, the DragonX software (version
1.2.1) was used to generate a baseline set of 1,579 predictors, including
constitutional, topological and connectivity descriptors, among others.

These variables consist of basic numeric variables (such as molecular
weight) and counts variables (e.g. number of halogen atoms).

The descriptor data are contained in an R data frame names descr and
the outcome data are in a factor vector called mutagen with levels
"mutagen" and "nonmutagen".

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 3 / 24

Test/Training Set Split

We decided to keep 75% of the data for training:

> library(caret)
> # initial data split
> set.seed(1)
> inTrain <- createDataPartition(mutagen, p = 3/4, list = FALSE)
> # this returns an index of which rows are in the sample
>
> trainDescr <- descr[inTrain,]
> testDescr <- descr[-inTrain,]
>
> trainClass <- mutagen[inTrain]
> testClass <- mutagen[-inTrain]

By default, createDataPartition does stratified random splits.

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 4 / 24

Filtering Predictors

There were three zero–variance predictors in the training data. We
removed them. We also remove predictors to make sure that there are no
between-predictor (absolute) correlations greater than 90%:

> ncol(trainDescr)
[1] 1576
> descrCorr <- cor(trainDescr)
> highCorr <- findCorrelation(descrCorr, 0.90)
> # returns an index of column numbers for removal
>
> trainDescr <- trainDescr[, -highCorr]
> testDescr <- testDescr[, -highCorr]
> ncol(trainDescr)
[1] 650

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 5 / 24

Transforming Predictors

The class preProcess can be used to center/scale the predictors, as well
as apply other transformations. By default, centering and scaling is done:

> xTrans <- preProcess(trainDescr, method = c("center", "scale"))
> trainDescr <- predict(xTrans, trainDescr)
> testDescr <- predict(xTrans, testDescr)

To apply PCA to predictors in the training, test or other data, you can use:

> xTrans <- preProcess(trainDescr, method = "pca")

To apply a “ spatial sign transformation” that projects the predictor onto
a unit circle (i.e. x = x/||x||):

> xTrans <- preProcess(trainDescr, method = "spatialSign")

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 6 / 24

Tuning Models using Resampling

Resampling (i.e. the bootstrap, cross–validation) can be used to figure out
the values of model tuning parameters (if any).

We come up with a set of candidate values for these parameters and fit a
series of models for each tuning parameter combination.

For each combination, fit B models to the B resamples of the training
data.

There are also B sets of samples that are not in the resamples. These are
predicted for each model.

B sets of performance values is computed for each candidate variable(s).

Performance is estimated by averaging the B performance values.

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 7 / 24

Tuning Models using Resampling

As an example, a support vector machine with a radial basis function
kernel:

K(a, b) = exp(−σ||a− b||2)

has two tuning parameters: σ and the cost value C.

We use the method of Caputo et al. (2002) to analytically estimate the
value of σ to be ≈ 0.0004.

We can train over 5 values of C: 10−1, 1, 10, 100 and 1,000.

B = 25 iterations of the bootstrap will be used as the resampling method.
We use:

> svmFit <- train(
+ x = trainDescr, y = trainClass,
+ method = "svmradial",
+ tuneLength = 5,
+ scaled = FALSE)

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 8 / 24

The train Function

> svmFit

3252 samples
650 predictors

summary of bootstrap (25 reps) sample sizes:
3252, 3252, 3252, 3252, 3252, 3252, ...

boot resampled training results across tuning parameters:

sigma C Accuracy Kappa Accuracy SD Kappa SD Optimal
0.000448 0.1 0.707 0.398 0.0102 0.0209
0.000448 1 0.808 0.612 0.0117 0.0238
0.000448 10 0.818 0.632 0.00885 0.0179 *
0.000448 100 0.798 0.59 0.0113 0.0226
0.000448 1000 0.78 0.555 0.0101 0.0204

Accuracy was used to select the optimal model

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 9 / 24

The Final Model

Resampling indicated that C = 10 is the best value. It fits a final model
with this value and saves it in the object:

> svmFit$finalModel
Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)
parameter : cost C = 10

Gaussian Radial Basis kernel function.
Hyperparameter : sigma = 0.000448258519236479

Number of Support Vectors : 1618

Objective Function Value : -9393.825
Training error : 0.080566
Probability model included.

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 10 / 24

Other Tuning Values
If you don’t like the default candidate values, you can create your own.
For a boosted tree via gbm:

> gbmGrid <- expand.grid(

+ .interaction.depth = (1:5) * 2,

+ .n.trees = (1:10)*25,

+ .shrinkage = .1)

>

> gbmFit <- train(

+ trainDescr, trainClass,

+ method = "gbm",

+ verbose = FALSE,

+ bag.fraction = 0.5,

+ tuneGrid = gbmGrid)

Model 1: interaction.depth= 2, shrinkage=0.1, n.trees=250

collapsing over other values of n.trees

Model 2: interaction.depth= 4, shrinkage=0.1, n.trees=250

collapsing over other values of n.trees

Model 3: interaction.depth= 6, shrinkage=0.1, n.trees=250

collapsing over other values of n.trees

Model 4: interaction.depth= 8, shrinkage=0.1, n.trees=250

collapsing over other values of n.trees

Model 5: interaction.depth=10, shrinkage=0.1, n.trees=250

collapsing over other values of n.trees

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 11 / 24

Shortcuts

Note that there are 50 different candidate values in gbmGrid, but only 5
models were fit.

In many cases, train will derive model predictions without fitting a model.

In this case, for a specific tree depth, we evaluate 10 different values of
n.trees.

However, if we fit a boosted tree with 250 iterations, we can derive the
predictions for all other models with n.trees < 250 (for the same tree
depth).

In many models, train exploits this to reduce training time.

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 12 / 24

(a) plot(gbmFit)
(b) plot(gbmFit, metric = "Kappa")

(a)

#Trees

bo
ot

 r
es

am
pl

ed
 tr

ai
ni

ng
 a

cc
ur

ac
y

0.74

0.76

0.78

0.80

50 100 150 200 250

●

●

●

●

●

●

●
●

● ●

Interaction Depth
2
4

6
8

10●

(b)

#Trees

bo
ot

 r
es

am
pl

ed
 tr

ai
ni

ng
 k

ap
pa

0.45

0.50

0.55

0.60

50 100 150 200 250

●

●

●

●

●

●

●
●

● ●

Interaction Depth
2
4

6
8

10●

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 13 / 24

(c) plot(gbmFit, plotType="level")

(d) resampleHist(gbmFit)
(c)

#Trees

In
te

ra
ct

io
n

D
ep

th

2

4

6

8

10

25 50 75 100 120 150 180 200 220 250

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

(d)

D
en

si
ty

0
10

20
30

0.78 0.80 0.82 0.84

●● ●●●● ●● ●● ●●● ●●● ● ● ●●
● ●

●
●●

Accuracy

0
5

10
15

0.55 0.60 0.65

●● ●●●
● ●● ●● ●●● ●●●

● ● ●●● ●● ●
●

Kappa

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 14 / 24

Available Models

Model method Value Package Tuning Parameters
Recursive partitioning rpart rpart maxdepth

ctree party mincriterion

Boosted trees gbm gbm interaction.depth,
n.trees, shrinkage

blackboost gbm maxdepth, mstop
ada ada maxdepth, iter, nu

Other boosted models glmboost mboost mstop

gamboost mboost mstop

Random forests rf randomForest mtry

cforest party mtry

Bagged trees treebag ipred None
Neural networks nnet nnet decay, size
Partial least squares pls, plsda pls, caret ncomp

Support vector machines svmradial kernlab sigma, C
(RBF kernel)

Support vector machines svmpoly kernlab scale, degree, C
(polynomial kernel)

Linear least squares lm stats None
Multivariate adaptive earth, mars earth degree, nprune

regression splines

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 15 / 24

Available Models

Model method Value Package Tuning Parameters
Bagged MARS bagEarth caret, earth degree, nprune
Elastic net enet elasticnet lambda, fraction
The lasso lasso elasticnet fraction

Linear discriminant analysis lda MASS None
Logistic/multinomial multinom nnet decay

regression
Regularized discriminant rda klaR lambda, gamma

analysis
Flexible discriminant fda mda, earth degree, nprune

analysis (MARS basis)
Bagged FDA bagFDA caret, earth degree, nprune
k nearest neighbors knn3 caret k

Nearest shrunken centroids pam pamr threshold

Naive Bayes nb klaR usekernel

Generalized partial gpls gpls K.prov

least squares
Learned vector quantization lvq class k

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 16 / 24

Predictions

Since the output of train contains the final model object, you can use its
predict methods as usual:

> gbmPred <- predict(
+ gbmFit$finalModel,
+ newdata = testDescr,
+ n.trees = 250,
+ type="link")
> gbmClass <- ifelse(gbmPred >= 0, "mutagen", "nonmutagen")
> gbmProb <-1/(1+exp(-gbmPred))

Instead of remembering these nuances, the caret functions
extractPrediction and extractProb to handle all of the inconsistent
syntax.

It can also handle multiple models at once.

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 17 / 24

Using extractPrediction to Get Class Predictions

> predValues <- extractPrediction(

+ list(

+ svmFit,

+ gbmFit),

+ testX = testDescr,

+ testY = testClass)

> testValues <- subset(

+ predValues,

+ dataType == "Test")

> str(testValues)

’data.frame’: 2166 obs. of 4 variables:

$ obs : Factor w/ 2 levels "mutagen","nonmutagen": 1 2 1 2 1 1 2 2 2 2 ...

$ pred : Factor w/ 2 levels "mutagen","nonmutagen": 1 2 2 2 1 1 2 2 2 2 ...

$ model : Factor w/ 2 levels "gbm","svmradial": 2 2 2 2 2 2 2 2 2 2 ...

$ dataType: Factor w/ 2 levels "Test","Training": 1 1 1 1 1 1 1 1 1 1 ...

> table(testValues$model)

gbm svmradial

1083 1083

> nrow(testDescr)

[1] 1083

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 18 / 24

Using extractProb to Get Class Probabilities

> probValues <- extractProb(

+ list(svmFit, gbmFit),

+ testX = testDescr,

+ testY = testClass)

>

> testProbs <- subset(

+ probValues,

+ dataType == "Test")

> str(testProbs)

’data.frame’: 2166 obs. of 6 variables:

$ mutagen : num 0.6332 0.2899 0.1662 0.0179 0.9346 ...

$ nonmutagen: num 0.3668 0.7101 0.8338 0.9821 0.0654 ...

$ obs : Factor w/ 2 levels "mutagen","nonmutagen": 1 2 1 2 1 1 2 2 2 2 ...

$ pred : Factor w/ 2 levels "mutagen","nonmutagen": 1 2 2 2 1 1 2 2 2 2 ...

$ model : chr "svmradial" "svmradial" "svmradial" "svmradial" ...

$ dataType : chr "Test" "Test" "Test" "Test" ...

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 19 / 24

Evaluating Performance

For classification models, there are functions to compute the confusion
matrix and associated statistics. There are also functions for two–class
problems: sensitivity, specificity and so on.

The function confusionMatrix calculates statistics for a data set. The
no–information rate (NIR) is estimated as the largest class proportion in
the data set. A one–sided statistical test is done to see if the observed
accuracy is greater than the NIR.

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 20 / 24

Confusion Matrices and Statistics

> svmPred <- subset(testValues, model == "svmradial")

> confusionMatrix(svmPred$pred, svmPred$obs)

Confusion Matrix and Statistics

Reference

Prediction mutagen nonmutagen

mutagen 528 99

nonmutagen 72 384

Accuracy : 0.8421

95% CI : (0.819, 0.8633)

No Information Rate : 0.554

P-Value [Acc > NIR] : 8.082e-91

Kappa : 0.6787

Sensitivity : 0.88

Specificity : 0.795

Pos Pred Value : 0.8421

Neg Pred Value : 0.8421

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 21 / 24

Other Fucntions

caret contains other functions

an alternate k–nearest neighbor classifier (knn3)

a function for partial least squares disciminant analysis (plsda)

maximum dissimilairty sampling (maxDissim)

a class for variable importance estimates across different models
(varImp)

ROC curves (roc, aucRoc)

and a few other functions

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 22 / 24

Parallel Processing
caret has a few sister packages that can be used to parallelize train.
One verison, caretNWS uses the NetWorkSpaces framework. The systax is
almost identical to train. Benchmarks show a good speedup when
compared to sequential processing:

#Processors

0
20

40
60

80
10

0

5 10 15 20

●

●

●

●

●

●
● ●

Train Time (Min)

5 10 15 20

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●
● ●

Train Time/Seq Time

gbm optimal pls svm●

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 23 / 24

Thanks

Thanks to

Benevolent Overlords David Potter and Ed Kadyszewski

Kjell Johnson, Dirk Eddelbuettel, Steve Milborrow, Steve Weston for
feedback

Martin for the invitation

Max Kuhn (Pfizer Global R&D) caret April 8, 2008 24 / 24

