
Economics and Computation

ECON 425/563 and CPSC 455/555

Professor Dirk Bergemann and Professor Joan Feigenbaum

Combinatorial Auctions

In case of any questions and/or remarks on these lecture notes, please

contact Oliver Bunn at oliver.bunn(at)yale.edu.



Economics and Computation Fall 2008 Combinatorial Auctions 1

1 Combinatorial Auctions

1.1 Overview

Our treatment of combinatorial auctions will be organized as follows:

1. Basic Structure

2. Vickrey-Clarke-Groves (VCG) mechanism;

3. Detour into Query-Models

4. Efficiency and Linear Programming

5. Efficient Allocations and Walrasian Equilibria

6. Detour into Ascending Bundle-Price Auctions

The analysis will rely strongly on chapter 11 of the textbook, [NRTV08].

1.2 Basic Structure

1.2.1 Basic Elements and Notation

• The set of objects/items is given by K = {1, ..., K}. The set of possible

bundles that can be formed from K is denoted by the power-set1 2K. An arbitrary

bundle is denoted by S ∈ 2K. Observe that the cardinality of 2K, i.e. the number

of elements in the set 2K, is given by 2K .

• The set of bidders/agents is given by N = {1, ..., N}.

• Agent n ∈ N has a valuation function

vn : 2K → R+.

That is, each agent n ∈ N assigns a non-negative number to every possible subset

of the set of objects K.

Assumption 1 For any bidder n ∈ N , the valuation-function vn satisfies ”free disposal”,

i.e.

• vn is normalized, i.e.

vn(∅) = 0.

1The power-set of K refers to the set of all subsets of K. For example for the set {1, 2, 3} the power-set
is given by {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
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• vn is monotone, i.e. for any two sets S, T ∈ K satisfying S ⊆ T

vn(S) 6 vn(T ).

Assumption 1 imposes two very intuitive restrictions on every bidders’ valuation function:

• If a bidder does not receive any object, then his valuation is zero.

• A bundle T that is simply a superset of a bundle S cannot yield strictly lower

valuation for a bidder than the bundle S. That is, additional elements cannot make

a bidder worse off.

Most importantly, the valuation-function vn is agent n’s private knowledge.2 She can be

asked to report it, but it is by no means clear that agent n will actually tell the truth.

So, it is the task of the mechanism-designer to set up a mechanism such that it is in the

agent’s self-interest to report her valuation. This will be a crucial feature of mechanisms

that we will be talking about below.

In order to reflect different preferences for bundles of items, certain restrictions CAN3 be

imposed on the valuation-function vn for an agent n ∈ N :

• vn can be assumed to be additive, i.e.

vn(S) =
∑
k∈S

vn(k).

Under the linearity-assumption, one obtains the valuation for a bundle by simply

adding up the valuations for the objects in K that constitute the subset S. In

consequence, one does not need to worry about specifying the valuation of agent n

for any possible subset S ⊆ K, but all valuations can be reverse-engineered from

the valuations of the objects k ∈ K.

Another important aspect is related to the point of view of an auctioneer. She does

not have to worry about offering bundles of the objects to be auctioned off, but it

is sufficient for her to assign each object k ∈ K in a separate auction.

• Alternatively, the valuation function might be defined in a non-additive manner for

two arbitrary subsets S, T ∈ 2K satisfying S ∩ T = ∅:
2So, the agent’s valuation function will be regarded as his type. This has previously been denoted by

tn.
3In comparison to the property of ”free disposal”, the following properties will not be assumed a priori.

They will be mentioned explicitly every time that each of them is imposed.
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– S and T are said to be complements iff

vn(S ∪ T ) > vn(S) + vn(T ).

That is, agent n values having both bundles more than getting either one of

them.

– S and T are said to be substitutes iff

vn(S ∪ T ) 6 vn(S) + vn(T ).

That is, agent n values having both bundles less than getting either one of

them.

Making use of the valuation-function4 vn of any agent n ∈ N , it will be assumed that

agent n’s utility function has the following functional form:

un : 2K × R → R
(S, t) 7→ vn(S)− t

So, agent n’s utility has an arbitrary subset S ⊆ K and a monetary transfer t as an

input. Then, her utility is given by her valuation of the bundle S minus the transfer that

she has to make. This particular specification of the utility-function is called quasi-linear

utility.

In order to complete the model, one also needs to think about the assignment of a utility-

function to the auctioneer, which we will also refer to as the government or the residual

recipient.5 This utility function, denoted by u0, is given by the following mapping:

u0 : 2M × RN → R

(S; t1, ..., tN) 7→
N∑

n=1

tn

The government’s utility function takes a subset fromM and the transfers from all agents

as an input. Its utility value is simply the sum of the transfers. The fact that a subset of

M appears as an input of u0, but does not affect the government’s utility at all is purely

due to notational convenience. It is by no means clear that the auctioneer will necessarily

distribute all objects to the bidders. Hence, the government will be considered as an

4None of the properties for vn need to hold for the following discussion - even ”free disposal” is not
necessary for the results in this section. The following statements are valid for any functional assumption
of vn : 2K → R+.

5In the following analysis, we will always assume that the auctioneer is benevolent, i.e. he does not
have a self-interest, but acts in the interest of the entity of the participants in the auction.
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additional entity that will receive all unassigned objects. The subset of the set K that

the government receives will be denoted by S0. Furthermore, we will use the notation

N0 , {0} ∪ N

to describe the set of agents plus the government.

1.2.2 Efficiency

In this subsection, we take the point of view of the auctioneer and try to determine the

”best” or efficient way (which will be made precise below) to distribute the M objects

among the N bidders and the government, i.e. over the set N0.

In order to come to the concept of efficiency, we need to formally define the concept of a

(feasible) allocation:6

Definition 1 A feasible allocation is a partition of the set K over the set N0, i.e. a

collection of subsets

S = (S0, S1..., SN)

such that:

1. For all n, n′ ∈ N0

Sn ∩ Sn′ = ∅;

2.
N⋃

n=0

Sn = K.7

The set of all such partitions (feasible allocations) will be denoted by S.

So, an allocation assigns a subset of objects from K to each player n ∈ N . We require

the intuitive conditions to be satisfied that no object is assigned to more than one player

(property 1.) and that the union of all assignments stays within the bounds of the set of

available objects (property 2.)

In order to obtain efficiency, it is necessary to aggregate all market-participants’ utilities

into a social (economy-wide) utility. An example of this aggregation is to take sum all

utilities, to which we will restrict attention in the following:8

6We will not consider any unfeasible allocations. Therefore, the following definition of ”allocation”
already incorporates feasibility.

7It is exactly the inclusion of the government that yields equality in this condition.
8The sum of all participants’ utilities is by far the most widespread criterion for efficiency.
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Taking an arbitrary feasible allocation (S0, S1, ..., SN) and a tuple of transfer (t1, ..., tN),

the social utility is given by

N∑
n=1

un(Sn, tn) + u0(S0; t1, ..., tN)

=
N∑

n=1

[vn(Sn)− tn] +
N∑

n=1

tn

=
N∑

n=1

vn(Sn)

The last expression (the sum of all agent’s valuations) is also referred to gross utility.

So, an efficient allocation is a feasible allocation that maximizes gross or social utility,

i.e. (S∗
1 , ..., S

∗
N) is called an efficient allocation iff

(S∗
1 , ..., S

∗
N) ∈ argmax

{
N∑

n=1

vn(Sn)

}
s.t. feasibility-conditions 1. and 2.

1.3 VCG-mechanism

Previously, we have already discussed the Second-Price auction as an example of an

efficient allocation.9 In the following, we aim to generalize the concept of the Second-

Price auction by introducing the Vickrey-Clarke-Groves10 (VCG) mechanism. But, before

that, we have to clarify the notions of direct mechanism and truthful revelation in

dominant strategies.

1.3.1 Valuation-Functions and Construction of a Direct Mechanism

A direct mechanism is given by the following pair of mappings:

• An allocation:

a : R2K ·N
+ → S,

a = (a1, ..., aN), where an : R2K ·N → 2K denotes the allocation that is assigned to

player n ∈ N .

9In this case, our argument for efficiency rested on the fact that the agent/bidder with the highest
valuation received the object, which is completely in line with our efficiency-criterion above.

10The corresponding articles are Vickrey (1962), Clarke (1972) and Groves (1974).
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• A vector of transfers:

t : R2K ·N
+ → RN

.

Both mappings that constitute a direct mechanism have R2K ·N
+ as their domain. That,

is they take a report about all valuations (remember that an agent’s valuations specifies

a non-negative value for every subset, i.e. a valuation-vector for an agent has length

R2K

+ ) from all agents (N agents) as their input. Then, the allocation-mapping outputs

a (feasible) allocation as described above and the transfer-mapping specifies a monetary

amount that agent n, n ∈ N , has to pay to the government (the benevolent planner).

1.3.2 Design of the Transfer

The transfer-vector t = (t1, ..., tN) ∈ RN will be specified with a very particular goal in

mind:

Truth-telling shall be a dominant strategy for the agent, i.e.

for all n ∈ N and all vn ∈ R2K

+ the following condition is satisfied

vn(an(v′1, ..., vn, ..., v
′
N))− tn(v′1, ..., vn, ..., v

′
N) >

vn(an(v′1, ..., v
′
n, ..., v

′
N))− tn(v′1, ..., v

′
n, ..., v

′
N) ∀ tuples (v′1, ..., v

′
n, ..., v

′
N)

The following remarks on this condition can be made:

• Player n compares two different regimes. In the first regime, she truthfully reports

the R2K

+ -vector to the mechanism-designer as vn. In the second regime, she makes

up a valuation-vector v′n to report to the mechanism-designer.

• Agent n makes the comparison between the two scenarios for all possible reports

that the other agents may submit, i.e. for (v′1, ..., v
′
n−1, v

′
n+1, ..., v

′
N). This is the

characteristic feature of the concept of ”dominant strategies”, because these strate-

gies are optimal irrespective of the opponents’ actions. This is in contrast to any

notion of Nash-equilibrium that we have considered so far. Here, one presupposes

a certain kind of action for the opponents, namely the equilibrium-actions.

• The vectors of valuations for all agents are plugged into the allocation-function and

agent n’s allocations as represented by the nth row an of the allocation-matrix.

• Finally, the allocation that agent n is assigned is evaluated according to agent n

true valuation function vn.
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Abstractly, agent n’s strategy, n ∈ N , in this setting can be defined as a mapping rn as

follows:

mn : R2K

+ → R2K

+ .

So, agent n takes her valuation-vector vn and transforms it into her report (which is often

referred to as her message) mn(vn). It will only be her report that she will announce

toward the mechanism-designer. In contrast, vn will remain her private knowledge.

The concept of truthful revelation corresponds to rn being the identity-mapping.

1.3.3 VCG-mechanism

As a particular example of a transfer-scheme which induces truth-telling as a dominant

strategy, we will specify the VCG-mechanism in the following. This mechanism is also

referred to as social externality pricing. That is, any agent is supposed to make a

payment according to the negative externality that she imposes on the remaining agents

by her presence.

Compare the following two social programs:11

• Social program including agent j:

S∗ = (S∗
1 , ..., S

∗
j−1, S

∗
j , S

∗
j+1, ..., S

∗
N) ∈ argmax

N∑
n=1

vn(Sn).

• Social program excluding agent j:

S∗
−j = (S∗

1 , ..., S
∗
j−1, S

∗
j+1, ..., S

∗
N) ∈ argmax

∑
n6=j

vn(Sn).

In the social program including agent j, the objects from the set K are optimally and

feasibly distributed taking all agents into account. In contrast, the second program simply

excludes agent j from the determination of an optimal and feasible distribution of the

elements in K.

Denote

V ∗ ,
N∑

n=1

vn(S∗
n),

V ∗
−j ,

∑
n6=k

vn(S∗
−j,n).

11Both programs are obviously computed under the feasibility-restriction.
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So, V ∗ and V ∗
−j describe the levels of social utility from the two social programs.

Observe the following general properties that arise from the comparison of the two pro-

grams:

1. Assume S∗
j = ∅. That is, in the program that includes agent j, this particular agent

optimally receives no element from M. In other words, agent j does not impose

any externality on the other agents. In this case, the difference between V ∗ and V ∗
−j

is equal to zero.

2. In general, the following inequality holds:

V ∗ > V ∗
−j.

The optimization-problem for V ∗
−j can be seen as a special case of the optimization-

problem for V ∗ in which the additional restriction S∗
j = ∅ is imposed. So, the

inequality above simply originates from the fact that the maximum for V ∗ is taken

over a superset of the set over which V ∗
−j is determined.

Now, we are in the position to ask ourselves what is the exact amount of the externality

that agent j should be charged. It is flawed to simply take the difference between V ∗

and V ∗
−j, because this ignores agent j’s contribution to social welfare in the first program.

Part of the payment of agent j would be his own valuation that he contributes to social

welfare. This problem can be overcome by the following definition of the transfer in the

VCG-mechanism:

tVCG
j ,

∑
n6=j

vn(S∗
−j,n)−

∑
n6=j

vn(S∗
n).

This exactly reflects the notion of social externality pricing. Agent j is charged the

difference in the sum of the utilities of all other agents (social utility without agent j),

when she is not considered in the allocation (first sum) and when she is (second sum).

Lemma 1

For all j ∈ N , the inequality tVCG
j > 0 holds.

Proof of Lemma 1

The first summand
∑

n6=j vn(S∗
−j,n) in the definition of tVCG

j describes the optimal level of

social utility that can be achieved of one takes agents (1, ..., j−1, j+1, ..., N) into account.

The second summand simply denotes another level of social utility in the situation that

considers (1, ..., j − 1, j + 1, ..., N). Therefore, the second summand is necessarily smaller

than or equal to the first summand.

2
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Making use of the definition of tVCG
j , agent j’s utility from the VCG-mechanism is given

by

vj(S
∗
j )− tVCG

j .

Lemma 2

The following two properties hold for any agent k ∈ N:

1. Agent j will participate in the mechanism.12 Put differently, her utility is non-

negative, i.e.

vj(S
∗
j )− tVCG

j > 0.

2. Truth-telling is a dominant-strategy.

Proof of Lemma 2

Applying the definition of tVCG
j , one obtains

vj(S
∗
j )− tVCG

j = vj(S
∗
j )−

[∑
n6=j

vn(S∗
−j,n)−

∑
n6=j

vn(S∗
n)

]
= vj(S

∗
j ) +

∑
n6=j

vn(S∗
n)−

∑
n6=j

vn(S∗
−j,n)

=
N∑

n=1

vn(S∗
n)−

∑
n6=j

vn(S∗
−j,n) (1)

= V ∗ − V ∗
−j. (2)

As it has been argued above in the general property 2., the difference V ∗ − V ∗
−j from (2)

is non-negative, proving part 1. of the claim.

In order to verify claim 2., observe that the expression V ∗
−j =

∑
n6=j vn(S∗

−j,n) in (1) does

not depend on the report of agent j, because he is simply not taken into account. So,

agent j tries to choose a report in order to maximize the social utility V ∗ =
∑N

n=1 vn(S∗
n)

in (1). This will guarantee herself maximum-possible utility. But fixing the other agents’

reported valuations, it is exactly the true valuation for agent j which will yield the best

possible level of social utility for agent j, so it is optimal for agent j to tell the truth.

Because the other agents’ reports have been assumed to be arbitrary, it follows that

truth-telling is a dominant strategy for agent j.

2

12Implicit in this statement is the assumption that the outside-option of any agent is zero, i.e. any
agent who does not participate in the mechanism obtains zero utility.
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1.3.4 Special Cases of the VCG-Mechanism

In this part we will look at the VCG-mechanism in the specific context of auctions with

unit demand.13 We will assume that all bidders are sorted by their valuation, i.e. we have

v1 > v2 > ... > vN .

Example - Single Object

So, first consider a situation in which there is only one good to be auctioned off:

• Each agent/bidder simultaneously submits a bid for an object.

• The person with the highest bid wins the object.

So, what will be the transfers that the VCG-mechanism prescribes? Remember that

VCG implies that truth-telling is a dominant strategy, so we do not have to care about

strategies, but can simply restrict attention to valuations of the agents:

• For agent 1, i.e. j = 1:

– According to the rules of the auction, she will be the bidder who receives the

object.

– Social utility is V ∗ = v1 in the program that includes her, since she is the only

one who receives the object.

– If agent 1’s valuation is subtracted from v∗ in order to obtain the sum
∑

n6=j vn(S∗
n),

it follows that ∑
n6=j

vn(S∗
n) = 0.

– Now, assume that agent 1 is excluded from the social program. Then, it will

be agent 2 who receives the only object to be auctioned off. In consequence,

social utility equals agent 2’s valuation, i.e.∑
n6=j

vn(S∗
−j,n) = v2.

– By the definition of tVCG
1 , it follows that

tVCG
1 = v2.

• For any agent j ∈ {2, ..., N}:
13Unit demand means that each bidder/agent only wants to obtain one object.
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– According to the rules of the auction, she will not receive the object, so her

valuation is zero.

– Social utility is v∗ = v1 in the program that includes her.

– Because agent j’s valuation is zero, v∗ remains unchanged if agent j’s valuation

is subtracted. Therefore, it follows that∑
n6=j

vn(S∗
n) = v1.

– Now, assume that agent j is excluded from the social program. Then, it will

still be agent 1 who receives the only object to be auctioned off. In consequence,

social utility equals agent 1’s valuation, i.e.∑
n6=j

vn(S∗
−j,n) = v1.

– By the definition of tVCG
j , it follows that

tVCG
j = 0.

Therefore, it is only agent 1 who has to make a payment and this payment equals the

second-highest bid/valuation. This is exactly the logic of the Second-Price auction.

Example - K Objects

Now, consider a situation in which there are k identical goods to be auctioned off:14

• Each agent/bidder simultaneously submits a bid for an object.

• The person with the m highest bids each win one object.

So, what will be the transfers that the VCG-mechanism prescribes? Again, remember

that VCG implies that truth-telling is a dominant strategy, so we do not have to care

strategies, but can simply restrict attention to valuations of the agents:

• For any agent j ∈ {1, ..., k}:

– According to the rules of the auction, she will one of the bidders who receive

one object.

14For ease of exposition, we will assume that the number of bidders is strictly bigger than the number
of objects to be auctioned off.
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– Social utility is V ∗ =
∑k

n=1 vn in the program that includes her.

– If agent j’s valuation is subtracted from v∗ in order to obtain the sum
∑

n6=j vn(S∗
n),

then it follows that ∑
n6=j

vn(S∗
n) =

∑
n∈{1,...,k}\{j}

vn.

– Now, assume that agent j is excluded from the social program. Then, it will

be agents 1, ..., j − 1, j + 1, ..., k, k + 1 who receive one object to be auctioned

off. In consequence, social utility equals∑
n6=j

vn(S∗
−j,n) =

∑
n∈{1,...,k+1}\{j}

vn.

– By the definition of tVCG
j , it follows that

tVCG
j = vk+1.

• For any agent j ∈ {k + 1, ..., N}:

– According to the rules of the auction, she will not receive the object, so her

valuation is zero.

– Social utility is v∗ =
∑k

n=1 vn in the program that includes her.

– Because agent j’s valuation is zero, v∗ remains unchanged if agent j’s valuation

is subtracted. Therefore, it follows that∑
n6=j

vn(S∗
n) =

k∑
n=1

vn.

– Now, assume that agent j is excluded from the social program. Then, it will

still be agents 1, ..., k who receive one unit of the object to be auctioned off. In

consequence, social utility equals the sum of agent 1’s to k’s valuation, i.e.∑
n6=j

vn(S∗
−j,n) =

k∑
n=1

vn.

– By the definition of tVCG
j , it follows that

tVCG
j = 0.

Therefore, it is agents 1, ..., k who have to make a payment and these payments equal

the (k+1)-highest bid/valuation. This is a generalization of the notion of a Second-Price

auction, which is called (k + 1)th Price auction.
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Example - 2 bidders and 2 Objects

Now, we will move away from the general framework of the previous two examples. We

will consider the following explicit valuation-profile in a setting of two bidders competing

for two objects:

v(a, b) v(a) v(b)

Alice 2 α β

Bob 2 2 2

Hereby, the condition 0 < α < β < 1 is satisfied.

The beginning of the analysis of this example will be the determination of the efficient

allocation, i.e. the particular allocation of the two objects a, b such that the sum of the

utilities of Alice and Bob is maximized. Obviously, this efficient allocation is given by the

following allocation:

• Assign item b to Alice.

• Assign item b to Bob.

Social utility in this case is given by 2 + β.

In a next step of the analysis, the transfers that are implied by the VCG-mechanism will

be determined. This is a generalization of the VCG-mechanism insofar as this mechanism

can also be used to determine bundle-prices. The previous description hinged on the

VCG-prices implementing the efficient allocation.

But, taking a specific bundle to be part of the allocation to be implemented allows to

continue to apply the logic of the VCG-mechanism and obtain bundle-specific VCG-

transfers for each agent.

The resulting VCG-transer-scheme is given by:

v(a, b) v(a) v(b)

tVCG
A 2 0 0

tVCG
B 2 2− β 2− α

This transfer-scheme is obtained as follows:

• For tVCG
A ({a, b}):

If Alice is not involved in the allocation, then it is the efficient allocation to assign

Bob the bundle {a, b}, which gives him valuation 2. If Alice is involved and is

assigned the bundle {a, b}, giving her valuation 2, then Bob’s valuation is zero.

Hence, total valuation minus Alice’s valuation is 0. In consequence,

tVCG
A ({a, b}) = 2− 0 = 2.
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• For tVCG
A ({a}):

If Alice is not involved in the allocation, then it is the efficient allocation to assign

Bob the bundle {a, b}, which gives him valuation 2. If Alice is involved and is

assigned a, giving her valuation α, then Bob’s valuation from b is 2. Hence, total

valuation minus Alice’s valuation is 2. In consequence,

tVCG
A ({a}) = 2− 2 = 0.

• For tVCG
A ({b}):

If Alice is not involved in the allocation, then it is the efficient allocation to assign

Bob the bundle {a, b}, which gives him valuation 2. If Alice is involved and is

assigned b, giving her valuation β, then Bob’s valuation from a is 2. Hence, total

valuation minus Alice’s valuation is 2. In consequence,

tVCG
A ({b}) = 2− 2 = 0.

• For tVCG
B ({a, b}):

If Bob is not involved in the allocation, then it is the efficient allocation to assign

Alice the bundle {a, b}, which gives her valuation 2. If Bob is involved and is

assigned the bundle {a, b}, giving him valuation 2, then Alice’s valuation is zero.

Hence, total valuation minus Bob’s valuation is 0. In consequence,

tVCG
B ({a, b}) = 2− 0 = 2.

• For tVCG
B ({a}):

If Bob is not involved in the allocation, then it is the efficient allocation to assign

Alice the bundle {a, b}, which gives her valuation 2. If Bob is involved and is

assigned a, giving him valuation 2, then Alice’s valuation from b is β. Hence, total

valuation minus Bob’s valuation is β. In consequence,

tVCG
B ({a}) = 2− β.

• For tVCG
B ({b}):

If Bob is not involved in the allocation, then it is the efficient allocation to assign

Alice the bundle {a, b}, which gives her valuation 2. If Bob is involved and is

assigned b, giving him valuation β, then Bob’s valuation from a is α. Hence, total

valuation minus Alice’s valuation is α. In consequence,

tVCG
B ({b}) = 2− α.
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So, the net-utility (valuation minus transfer) for Alice and Bob is given by:

• Alice’s net-utility is given by β.

She receives item b, giving her valuation β, and the transfer that is prescribed by

the VCG-mechanism for this ”bundle” is 0.

• Bob’s net-utility is also given by β.

He receives item a, giving him valuation 2, and the transfer that is prescribed by

the VCG-mechanism for this ”bundle” is 2− β.

It can easily be determined that the efficient allocation in combination with the prescribed

transfer-scheme is incentive-compatible - even without referring to the general property

of the VCG-mechanism outlined above. For neither of the two players, there is another

bundle which offers higher net-utility than the efficient allocation with the VCG-pricing-

scheme, i.e. neither Alice nor Bob have an incentive to deviate from the efficient allocation.

General Properties of the VCG-mechanism

Two more properties are apparent for the above stated VCG-transfer-scheme:15

• The price for a bundle is dependent on the identity of Alice and Bob, i.e. Alice pays

different transfers for the same bundles than Bob.

• The pricing-scheme is non-linear.

Subsequent to this example, it is reasonable to pursue the following general questions:

• Is there a price-scheme such that prices are independent of the identity of the bid-

ders?

• Is there a price-scheme such that prices are linear?

• If the answer to any of the above two questions is ”yes”, can we determine such an

allocation?

• Once we have a procedure to determine such an allocation, can one make any

statement about the efficiency of this allocation about incentive-compatibility?

These questions constitute the transition from the examples on VCG-pricing, and VCG-

pricing in general, to a specific mechanism that yields identity-independent and linear

prices, the so-called Ascending Auctions. But before this auction-format is discussed,

there will be a small detour into the area of queries.

15The described properties actually hold in much more general settings that go far beyond the content
of this example.
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1.4 The Query Model

By designing a mechanism, an auctioneer aims at eliciting the bidders’ private information,

i.e. their valuation-functions. She can do this in the following two distinct ways. Hereby,

an important role is played by the notion of a bidder’s demand set which is defined as

follows:16

Definition 2 (Demand Set) Given a price-vector p = (p1, ..., pK), a set S ∈ 2K is said

to be the demand set Dn(p) of agent n, n ∈ N , iff

vn(S)−
∑
k∈S

pk > vn(T )−
∑
k∈T

pk ∀T ∈ 2K.

Now, the two approaches to elicit the bidders’ private information are the following:

• Value Query

The presents a bundle S ∈ K to the bidder. Subsequently, the bidder reports his

valuation for this bundle.

• Demand Query

The presents a bundle S ∈ K to the bidder. Subsequently, the bidder reports his

valuation for this bundle.

Subsequently, we will compare these two definitions, i.e. in particular we will investigate

the interchangeability of the two approaches. This first proposition makes a statement

about the use of demand queries to imitate value queries:

Proposition 1 A value query may be simulated by at most K · t demand queries, where

t is the number of bits of precision in the representation of a bundle’s value.

Proof of Proposition 1

So, consider a set S = K. Wlog, S can be represented as

S = {1, ...,m},

where, trivially, m 6 K. The proof will be conducted in two steps:

1. A bidder’s valuation for the set S satisfies the relation

v(S) =
m∑

j=1

v({i ∈ S|i 6 j})− v({i ∈ S|i < j})

16The following definition does not exclude multiple sets in the demand of a bidder. In most of the
following analysis, we will abstract from this issue for reasons of simplicity. Otherwise, one would have
to make sure every time that a demand shows up and is used in the subsequent analysis that the used
demand coincides with the ”correct” (out of the potentially multiple possible) set chosen by the bidder.



Economics and Computation Fall 2008 Combinatorial Auctions 17

In words, the valuation for the set S can be decomposed into the sum (over S’s

elements) of so-called marginal value queries, i.e. queries that investigate the addi-

tional valuation that a bidder obtains from one particular element.

2. For any j ∈ {1, ...,m}, the auctioneer can obtain the quantity

v({i ∈ S|i 6 j})− v({i ∈ S|i < j})

by at most t demand queries.

Ad 1.

From the assumption that v satisfies ”free disposal” it follows that

v(S) = v(S)− v(∅)
= v({i ∈ S|i 6 m})− v({i ∈ S|i < 0})

Hence, the desired property is a telescopic sum that adds and subtracts the elements

v({i ∈ S|i 6 1}), v({i ∈ S|i 6 2}), ..., v({i ∈ S|i 6 m− 1}),

making use of the fact that

v({i ∈ S|i 6 j}) = v({i ∈ S|i < j + 1}) for j = 1, ...,m− 1.

Ad 2.

In order to elicit the valuation

v({i ∈ S|i 6 j})− v({i ∈ S|i < j}),

by a demand-query, the auctioneer can offer the following set of item-prices:

• For i = 1, ..., j − 1: pi = 0.

• For item j: pj > 0 to be varied by the auctioneer.

• For i = j + 1, ...,m: pi =∞.17

17From the logic of the following argument, it becomes apparent that a very high price (exceeding the
highest possible valuation for any bundle from 2M) will work - ∞ should be understood as a synonym
for such a quantity.
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In this case, a bidder will never demand a bundle that contains any of the items j+1, ...,m.

Furthermore, any bundle that is demanded by a bidder will contain all of the items

1, ..., j − 1 because these items have non-negative value for the bidder but a zero-price at

the same time. So, the only question is whether the bidder will demand the set {1, ..., j−1}
or the set {1, ..., j}. According to the previous two properties, these will be the sets that

yield the two highest net-utilities for a bidder. The bidder will demand the set {1, ..., j}
if

v({1, .., j})−
j∑

i=1

pi > v({1, .., j − 1})−
j−1∑
i=1

pi.

Taking the above specified price-set into account, one obtains

v({1, .., j})− pj > v({1, .., j − 1})
⇔ v({i ∈ S|i 6 j})− v({i ∈ S|i < j}) > pj

Hence, one can start with the smallest possible price for pj. Gradually increasing pj,

the desired valuation-difference is obtained if the bidder stops demanding the bundle

{1, ..., j}. This requires exactly t many demand queries. Making use of the fact that this

procedure has to be repeated m times to determine all marginal valuation queries, one

obtains the upper bound m · t for the number of demand queries to obtain the result for

one value-query.

2

After having investigated the exchangeability of a value query by demand queries, we will

now turn to the reverse question:

Proposition 2 An exponential numbers of value queries may be required for simulating

a single demand query.

Example for Proposition 2

This has been the content of Problem 1 on Assignment 3. The following example - taken

from [BN05] - contains a valuation-profile satisfying appropriate properties:

• A single demand query reveals enough information for determining the optimal

allocation.

• The elicitation of the optimal allocation may require an exponential number (in the

number of items K) of value queries.

Consider an auction with two bidders that are competing for bundles from K. Let B

denote a specific subset of K such that |B| = K
2
.
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Bidder 1’s valuation is given by

v1(S) =

{
2|S| for every S ∈ P(K)\{B}
2|S|+ 2 for S = B

That is, bidder 1 values every bundle from the set K according to twice the number of its

elements, but she gets an extra jolt of utility from the bundle B.

Bidder 2’s valuation is given by18

v2(S) = 2|S|+ 1 for every S ∈ P(K).

Because it is the only allocation that achieves the maximum possible total valuation of

2|K|+ 3, the following allocation to assign the bundle B to agent 1 and the bundle K\B
to bidder 2 is optimal.

Now, consider a single demand query in which the price for each item in K will be set to

2 + ε, where ε ∈ (0, 4
K

). In this case, bidder 1 will demand the bundle B:

• B is the only bundle that guarantees bidder 1 a positive net-utility because

2
K

2
+ 2− 2

K

2
− ε

K

2
> 0

by the choice of ε.

• All other bundle generate negative net-utility because

2
K

2
− 2

K

2
− ε

K

2
< 0

by the choice of ε.

So, the demand query reveals enough information (coming from bidder 1’s demand-

response) to determine the optimal allocation.

Determining the optimal allocation, the auctioneer can make use of the available infor-

mation that there exists a set of cardinality K
2

for which bidder 1 receives an extra jolt

of utility, but the auctioneer does not know the bundle B. Hence, it is the auctioneer’s

task to elicit the information which set of cardinality K
2

gives one of the bidders this extra

jolt. So, the auctioneers will ask bidder 1 for her valuation of different sets of cardinality
K
2
, until the auctioneer has found the set B. Therefore, it can be concluded that the

elicitation of the particular bundle B requires at most
(

K
K
2

)
value queries, the number of

sets of cardinality K
2

within the set K, having cardinality K. But, the number
(

K
K
2

)
is

exponential in K.

18Both valuations are designed to satisfy the assumption of ”free disposal” imposed above. This
property is the whole reason why the cardinality of all involved sets is multiplied by 2.
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2

The results in Propositions 1 and 2 suggest that it is more appropriate to use demand

queries to determine a solution to the combinatorial-auction-problem. Each of the two

forms of queries may be more suitable for certain valuation-profiles of the participating

bidders. But whereas it is possible to imitate a value query with a demand query in

polynomial time (Proposition 1), the reverse imitation is not polynomial (Proposition 2).

Another complication from the use of value-queries arises from incentive-compatibility.

Whereas a bidder in demand-query will always report the bundle that gives him the

highest net-utility (which is, by definition, her demand), the bidder might not find it

optimal to report her true valuation in a value-query.

For both of these reasons, attention will be restricted to special cases of demand queries

in the following.

1.4.1 Ascending Item-Price Auction Algorithm

According to the analysis of the detour on query-models, it is more appropriate for the

auctioneer - in the sense of being more robust to different valuation-profiles of the bid-

ders - to make use of demand queries to elicit the bidders’ private information, i.e. their

valuation-function.

A particularly important example for this procedure is the following algorithm of an As-

cending Item-Price Auction: 19

Algorithm

• Initialization

Set Sn = ∅ ∀n ∈ N , pk = 0 ∀k ∈ K.

• Loop

1. For each n ∈ N , let Dn be the demand of agent n at the following prices:

pk for k ∈ Sn, (3)

pj+ε for j 6∈ Sn. (4)

19It is important to note that only item-prices will play a role in the subsequent analysis. The price of
a bundle in this algorithm will be the sum of the prices of the items that are contained in the bundle.
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If Sn = Dn ∀n ∈ N , exit the loop.

2. Otherwise, pick n ∈ N such that Dn 6= Sn and update:

For every item k ∈ Dn\Sn: pk ← pk + ε.

Sn ← Dn.

For every bidder j 6= n Sj ← Sj\Di

• Output

Allocation S1, ..., SK .

Observe that this algorithm exhibits a slight asymmetry, as it picks a particular bidder

in each step who is assigned his demand. But this asymmetry is ameliorated by the fact

that the price-increase ε is assumed to be very small and by the fact that the specific

bidder in every step of the algorithm is chosen at random.

Example for an Ascending Item-Price Auction

In order to get an idea about the ascending-auction algorithm consider the following

valuation-profile:

v(a, b) v(a) v(b)

Alice 4 4 4

Bob 10 5 5

1. The algorithm starts out with the initialization pa = pb = 0 as well as SA = SB = ∅.
At the start of the loop, prices are set to ε > 0. At these prices, Alice is indifferent

between the bundles {a} and {b} and, hence, will demand either a or b. Bob will

demand {a, b}. Obviously, DA 6= SA as well as DB 6= SB.

2. Assume that the algorithm picks Bob and assigns him the items a and b, i.e. SB =

{a, b}. Prices are set to pa = ε as well as pB = ε. Furthermore, the allocation for

Bob means that SA = ∅ remains as in the initialization.

3. Alice’s demand is determined at price 2ε for both items. She is indifferent between

the bundles {a} and {b} and, hence, will demand either a or b. Bob’s demand is

determined at price ε and he will again demand the bundle {a, b}. For Bob, one

observes SB = DB, but for Alice SA ( DA.

4. At this stage, assume that the algorithm picks Alice and assigns her demand to her,

say the bundle {a}, i.e. SA = {a}. Moreover, pA is set to 2ε, but pB remains at ε.

Additionally, the allocation for Alice implies that SB = {b}.
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5. Alice’s demand is determined at prices 2ε for both items. She is indifferent between

the bundles {a} and {b} and, hence, will demand either a or b. Bob’s demand is

determined at prices pa = 3ε and pb = ε and he will again demand the bundle {a, b}.
For Bob, one observes that SA ( DA and SB ( DB.

6. At this stage, assume that the algorithm picks Alice again and assigns her demand

to her, say the bundle {a}, i.e. SA = {a}. Moreover, pA is set to 3ε, but pB remains

at ε. Additionally, the allocation for Alice implies that SB = {b}.

7. Alice’s demand is determined at prices pa = 3ε and pb = 2ε. In consequence, she

will demand {b}. Bob’s demand is determined at prices pa = 4ε and pb = ε and

he will again demand the bundle {a, b}. For Bob, one observes that SA ( DA and

SB ( DB.

8. ...

The algorithm will terminate at prices pa and pb that satisfy

4 6 pa < 4 + ε, 4 6 pb < 4 + ε.

At these prices, Bob will be assigned the bundle {a, b} and Alice will not receive a bundle.

The net-utility for the two bidders is given by

0− 0 for Alice

10− pa − pb for Bob

The described payments and net-utilities can be compared to those that are implied by

the VCG-mechanism:

• For the bundle {a, b}, the VCG-mechanism prescribes a transfer of 4:

– Without Bob being present, Alice would receive the bundle {a, b} and obtain

valuation 4.

– With Bob being present, Alice receives the empty set, implying valuation 0.

– The VCG-transfer is therefore given by 4− 0 = 4.

• Bob’s net-utility is therefore given by 10 − 4 = 6 which is strictly higher than the

resulting net-utility from the ascending-price auction. Alice’s net-utility remains

the same at 0.

This example already hinges on a very essential problem of ascending item-price auctions:

From the analysis of the VCG-mechanism, it becomes apparent that Bob is actually not
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obtaining his maximum possible net-utility from the ascending item-price auction (the

net-utility from the VCG-mechanism is higher). Hence, it appears as if Bob might have

an incentive to manipulate the ascending item-price auction (by not acting according to

his valuation-function in every step of the algorithm) in order to make himself better off.

Hence, we can conclude that the ascending item-price auction is not as neat as possible

when it comes to incentive-compatibility.

This concludes the elaboration on the example of an Ascending Item-Price Auction. Now,

we will turn back to the general setting.

The following property plays a very important role in the convergence of the above de-

scribed general auction-mechanism:

Definition 3 (Gross Substitutes) The items in the combinatorial-auction-problem are

called gross substitutes for agent n ∈ N iff

for prices20 p 6 q and sets

A ∈ argmaxS∈2K{vn(S)−
∑
k∈S

pk}

Q ∈ argmaxS∈2K{vn(S)−
∑
k∈S

qk}

the following inclusion holds:

{k ∈ A|pk = qk} ⊆ Q.

In words, the Gross-Substitutes-property states that items can only drop from a bidder’s

demand if their price is changed. This property rules out any form of complementarity.

Example for the Gross-Substitute-property

Consider the case of two items a, b. Suppose that valuations are as follows:

v(a) = v(b) = 3, v({a, b}) = 10.

Furthermore, prices are given by

pa = pb = 4.

20The relation ”>” with respect to vectors means greater than or equal to for every component of the
respective vectors.
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In this case, a bidder’s demand will be given by {a, b} because this is the only bundle that

guarantees her strictly positive net-utility. Increasing pb to 7 and leaving pa unchanged

at 3, the Gross-Substitute-property implies that the demand at the new prices has to in-

clude the item a. But the new demand is given by the empty-set, yielding zero net-utility,

because any other bundle will give the bidder strictly negative net-utility. Contrary to

the predictions of the Gross-Substitute-property, the new demand does not include item

a anymore although its price has not changed. Hence, the Gross-Substitute-property is

violated in this example.

After having clarified the notion of Gross Substitutes in the example, we will now turn

to the property of convergence of the auction-algorithm that heavily builds upon the

Gross-Substitutes-property:

Proposition 3 If all bidders have substitute valuations, the ascending price auction will

converge.

Lemma 3 Suppose that all bidders have substitute valuations. Then, at any step of the

algorithm, the following inclusion holds for any player ninN :

Sn ⊂ Dn

Proof of Lemma 3

At the initial step, Sn = ∅ for all bidders n ∈ N . Hence, it will trivially be true that at

this step

Sn ⊆ Dn, ∀n ∈ N .

So, now consider the step of updating the sets {Sn}n∈N within the loop of the algorithm.

For one of the bidders, say bidder j ∈ N , the sets Sj and Dj will coincide by the con-

struction of the algorithm. For all other bidders k ∈ N\{j}two changes might occur,

potentially affecting their S-sets as well as their demands:

• Items might be taken away from bidder k. But, from the previous step of the

algorithm, the property Sk ⊆ Dk has been known. Therefore, reducing the set Sk

will not affect the validity of the inclusion Sk ⊆ Dk.

• The price of items outside of Sk might increase. This change does not affect the

set Sk. Concerning the set Dk, it is the Gross-Substitute-property that guarantees

that only those items can be removed from Dk (due to the price-increase) which

are outside of the set Sk. All items in Sk have unchanged prices, so the Gross-

Substitute-property requires those elements of Dk that are in Sk [from the previous
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step of the loop] to remain in Dk after the price-increase, i.e. Dk will still be a

super-set of Sk.

This concludes the proof of the property that Sn ⊆ Dn for all n ∈ N at all steps of the

ascending-price-auction algorithm.

2

Proof of Proposition 3

From the updating-procedure that is described by the algorithm, it becomes apparent

that no item from the union of sets S1, ..., SN ,
⋃N

n=1 Sn, can be eliminated from this union

via updating:

• One set Sj, j ∈ N , will be set to Dj, where it follows from Lemma 3 that Sj ⊆ Dj.

• For all other Sk, k 6= j, it is only the potentially additional items that have been

assigned to Sj which are deleted from Sk.

Furthermore, the increasing prices ultimately lead to a deletions in the demanded bundles.

Hence, the demand-set will ultimately be driven down to the respective S-sets, terminating

the algorithm.

2

The analysis of the ascending item-price auction will be concluded by a statement about

an upper bound for the number of iterations of the algorithm. Thereby, a central role is

played by the maximum possible valuation, which is defined as

vmax
4
= max

n
max S ∈ 2K.

Proposition 4 For a fixed ε > 0, all the objects are assigned to the bidders in at most
K·vmax

ε
steps. The resulting allocation is feasible.

It is important to observe what is NOT contained in the previous proposition:

Proposition 4 is NOT concerned with

• a statement on efficiency of the prescribed allocation;

• a statement on prices that support the prescribed allocation;

• a state of the relation between the prescribed allocation and the VCG-allocation.

It would be highly desirable to have statements like the following:

• The prescribed allocation is socially efficient.

• The prices supporting the allocation are equal to the equilibrium prices that support

the ε-Walrasian equilibrium.

These issues will be addressed in the following two sections.
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1.5 Efficiency and Linear Programming

In this part, the focus will, again, be put on efficient solutions of the general combinatorial

auction problem. In particular, the question will be investigated how the efficient solution

is related to the concept of a Walrasian equilibrium for the general problem.

The determination of the efficient solution to the combinatorial auction can be written as

the following linear programming problem:

max
∑
n∈N

∑
S∈2K

xn,Svn(S) (5)

s.t.
∑
n∈N

∑
{S|k∈S}

xn,S 6 1 ∀k ∈M (6)

∑
S∈2K

xn,S 6 1 ∀n ∈ N (7)

xn,S ∈ {0, 1} ∀n ∈ N ,∀S ∈ 2K. (8)

In words, this linear programming problem exhibits the following properties:

• The maximand is the social utility from an allocation in the combinatorial auction

problem. Only those valuations play a role for which the algorithm prescribes the

bundle to be assigned, i.e. xn,S = 1.

• This set of constraints implies that every item can at most be included in one bundle

that is contained in the allocation.

• This set of constraints implies that every bidder can at most be allocated one bundle.

Instead of the binary constraint on {xn,S}n∈N ,S∈2K , the relaxed linear programming prob-

lem simply imposes a non-negativity-constraint on the variables {xn,S}n∈N ,S∈2K . This

relaxation allows to apply the powerful machinery of linear programming and duality (to

be displayed in full generality in the next part) to the combinatorial-auction problem:21

The primal program of the linear programming relaxation (LPR) of the combinatorial-

21As it will become apparent below, the general methodology only applies to inequality-constraints,
rendering the binary constraints impossible.
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auction-problem is given by

max
∑
n∈N

∑
S∈2K

xn,Svn(S) (9)

s.t.
∑
n∈N

∑
{S|k∈S}

xn,S 6 1 ∀k ∈M (10)

∑
S∈2K

xn,S 6 1 ∀n ∈ N (11)

xn,S > 0 ∀n ∈ N ,∀S ∈ 2K. (12)

The dual program of the linear programming relaxation (LPR) of the combinatorial-

auction-problem is given by

max{un}n∈N ,{pk}k∈K

∑
n∈N

un

∑
k∈K

pk (13)

s.t. ui +
∑
k∈S

> vn(S) ∀n ∈ N ,∀S ∈ K (14)

un(S) > 0 ∀n ∈ N (15)

pk(S) > 0 ∀k ∈ K (16)

Importantly, the primal and the dual problem are interrelated as follows:

• The set {pk}k∈K represents the Lagrange-multipliers to the constraints in (10).

• The set {un}n∈K represents the Lagrange-multipliers to the constraints in (11).

1.5.1 Canonical Linear Programming

This section deals with the three most important results that arise from the study of

linear programming:

• Weak Duality

• Duality Theorem

• Complementary Slackness

All of these results are presented for very general linear programming problems. In a

subsequent step, the general framework will be translated into the special case of the

combinatorial-auction-problem.
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The primal linear programming program is given by

Zp
4
= maxx c · x

s.t. Ax = b (17)

x > 0

Here, c and x are vectors in Rn, A is a matrix in Rm×n and b is a vector in Rm. Hence,

(17) represents m constraints that are imposed on the optimization problem.

Remark 1 Instead of the inequality-constraint Ax 6 b, it is without loss of generality

to impose the constraint Ax = b. This is due to the fact that the case Ax < b can be

circumvent by the introduction of a non-negative slack-variable s
4
= b− Ax, which allows

to express the constraint as

Ax + s = b.

Remark 2 A solution to the primal linear programming problem will fall into one of the

following three categories:

• The solution is infeasible, i.e. a solution to the linear programming problem does

not exist.

• The cardinality of the set of solutions is infinite.

• The cardinality of the set of solutions is finite.

The dual program to the above primal linear programming problem is given by

ZD
4
= miny y · b

s.t. yT A > c

y is unconstrained

Here, y is a vector in Rm and represents the Lagrange-multipliers to the m constraints of

the primal program in (17).

Proposition 5 (Weak Duality) The optimum-values of the primal and the dual linear

programming problem are related via

ZD > ZP .

This proposition states that the solution from the dual problem (the minimization-problem)

will always be bigger than or equal to the solution of the primal problem (the maximiza-

tion problem).
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Proof of Proposition 5 Consider the vector c and the set of constraints represented

by A. Surely, one can find a linear combination yA of the constraints such that

c 6 yA. (18)

Making use of the property x > 0, (18) can be equivalently transformed into

c · x 6 yAx. (19)

But, according to the constraint Ax = b, the right hand side of (19) can be rewritten as

c · x 6 y · b,

implying the desired property ZD > ZP .

Proposition 6 (Duality Theorem) If a finite solution to either the primal or the dual

problem exists, then

ZD = ZP .

This proposition strengthens the result from the previous proof in that it ensures - under

the additional of a finite solution - that the solution to the primal and the dual problem

coincide.

This proposition is a consequence of Farkas’ lemma and its proof will not be stated.

Proposition 7 (Complementary Slackness) If a feasible pair (x∗, y∗) is optimal for

the primal and the dual linear programming problem, then the following two implications

hold:

•
x∗k > 0⇒

∑
n

anky
∗
n = ck.

• ∑
n

anky
∗
n > ck ⇒ x∗k = 0.

This is a very important statement about the constraints of the two linear programming

problem. It specifies when these conditions are binding and/or are slack.
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Proof of Proposition 7

It will be shown that for all k the following condition holds:[∑
n

anky
∗
n − ck

]
x∗j = 0.

In matrix-form, the desired set of equalities read

y∗Ax∗ − cx∗ = 0 (20)

From this condition, the two implications of the proposition follow.

From Proposition 6, one obtains that

y∗b− cx∗ = 0.

Now, (20) follows from the constraint b = Ax∗ of the primal linear programming problem.

Example on Duality

Consider the following problem to optimize over the variables x1, x2, x3 subject to the

stated constraints. The slack-variables are denoted by s1, s2, s3 according to the three con-

traints (besides the positivity-constraints on x1, x2, x3) that are imposed on the optimization-

problem. Finally, the Lagrange-multipliers on the three constraints (again, besides the

positivity-constraints) are denoted by y1, y2, y3.

The primal linear programming problem is given by

maxx1,x2,x3 x1 + 2x2

s.t. x1 + 8
3
x2 + s1 = 4,

x1 + x2 + s2 = 2,

2x1 + s3 = 3,

x1 , x2 , s1 , s2 , s3 > 0.

The dual linear programming problem to this primal problem is given by

min 4y1 + 2y2 + 3y3

s.t. y1 + y2 + 2y3 > 1,
8
3
y1 + y2 > 2,

y1 , y2 , y3 > 0.

The duality-theorem implies that solving the primal linear programming problem is equiv-

alent to solving the dual linear programming problem. In particular, the solutions to both

problems coincide.
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1.5.2 Translation into the Combinatorial Auction Problem

The general setting of linear programming problems is translated as follows into the setup

of the combinatorial auction problem in which we are ultimately interested in:

• vector c:

– c is a (N × 2K)× 1-vector.

– It consists of a 2K × 1-part for each bidder n = (1, ..., N).

– Each 2K×1-part contains the valuations for the respective bidder for all possible

bundles (there are 2K-many bundles).

• vector b:

– b is a (N + K)× 1-vector.

– It consists of (N + K)-many 1-entries.

– Each 1-entry corresponds to the right hand side of one of the (N + K) restric-

tions that are imposed on the linear programming problem.

• vector x:

– x is a (N × 2K)× 1-vector.

– It consists of a 2K × 1-part for each bidder n = (1, ..., N).

– Each 2K×1-part contains the bundles that are assigned to the respective bidder

(there are 2K-many bundles).

– If a bundle is assigned to bidder n ∈ N , the respective part of the vector x

contains a 1-entry.

• matrix A:

– A is a (K + N)× (N × 2K)-vector.

– The first K rows correspond to the constraints that each object k ∈ {1, ..., K}
can only be assigned once. Now, fix k ∈ K. Each element in one of the N -many

blocks of size 2K corresponds to one bundle S ∈ 2K. Row k will have an entry

1 if the element of the row-vector corresponds to a bundle in which item k is

contained. All other entries in row k will be zero.

– The constraint that each item k ∈ K can only be assigned once is incorporated

in the preceding structure as follows:

Element k of the product Ax corresponds to the number of bundles in which
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k is contained.22 The constraint that is imposed by the vector b is that there

is at most one such bundle. In other words, item k is at most assigned in one

bundle, i.e. at most to one bidder.

– The bottom N rows correspond to the constraints that each bidder n =

(1, ..., N) can only be assigned one bundle. Now, fix n ∈ N . Row n con-

sists of N -many blocks of size 2K , each block corresponding to a bidder. The

nth block of length 2K will have all entries being 1.

– The constraint that each bidder n ∈ N can only be assigned one bundle:

Element n of the product Ax corresponds to the number of bundles that are

assigned to bidder n.23 The constraint that is imposed by the vector b is that

each bidder obtains at most one such bundle.

1.6 Efficient Allocations and Walrasian Equilibria

After the theory of linear programming problems has been laid out in the previous section,

we will now turn to the question how the solution to the linear programming problem

is related to the optimality of the choice of a bundle for each agent. Such an allocation

combined with item-prices that are prescribed by the auctioneer, in which each agent

obtains the bundle which is optimal (in the sense of maximizing his net-utility) is called

a Walrasian equilibrium:

Definition 4 (Walrasian Equilibrium) A pair (S∗, p∗), consisting of an allocation S∗ =

(S∗
1 , ..., S

∗
N) and a set of nonnegative prices p∗ = (p∗1, ..., p

∗
K), is called a Walrasian equi-

librium if at prices p∗ the following two conditions hold:

1. S∗ is a feasible allocation.

2. S∗
n is agent n’s demand at p∗, n ∈ N . Moreover, any j 6∈ ∪N

n=1Sn satisfies p∗j = 0.24

In a first step, it will be shown that, at a Walrasian equilibrium, we have already arrived

at the socially optimal solution.

22The matrix-row in A as well as the vector x only contain 0 or 1 as elements. That is, the kth element
of the product ”counts” the number of times in which a 1-entry of the row-vector in A ”meets” a 1-entry
of the vector x, i.e. the number of times that a bundle is assigned that contains item k.

23The matrix-row in A as well as the vector x only contain 0 or 1 as elements. That is, the nth element
of the product ”counts” the number of times in which a 1-entry of the row-vector in A ”meets” a 1-entry
of the vector x, i.e. the number of bundles that are assigned to bidder n.

24In words, every object that is not assigned to any of the bidders (j 6∈ ∪N
n=1Sn) has zero price. This

corresponds to the most extreme situation for object 0. Although the object is as cheap as possible (it
has zero price), it is in no bidders’ interest to obtain the good.
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Theorem 1 (First Welfare Theorem) If the pair (S∗, p∗) is a Walrasian equilibrium,

then the allocation S∗ maximizes social welfare over all fractional allocations, i.e. all

solutions to the relaxed linear programming problem.25 That is, for all feasible solutions

{xn,S}n∈N ,S∈2K to the LPR ∑
nN

vn(S∗
n) >

∑
nN ,S∈2K

xi,Svi(S).

Proof of Theorem 1

The statement of the theorem compares the allocation S∗ from the Walrasian equilibrium-

pair (S∗, p∗) to any allocation S that arises as the solution to the linear programming

problem stated above.

By the definition of a Walrasian equilibrium, S∗
n is the demand of agent n at prices p∗,

where n ∈ N . That is, for all n ∈ N , one has

vn(S∗
n)−

∑
k∈S∗n

p∗k > vn(S)−
∑
k∈S

p∗k ∀S ∈ 2K. (21)

Feasibility of any solution to the linear programming problem implies that∑
S∈2K

xn,S 6 1. (22)

Making use of (22) allows, for any n ∈ N , to rewrite (21) as follows

vn(S∗
n)−

∑
k∈S∗n

p∗k >
∑
S∈2K

xn,S

(
vn(S)−

∑
k∈S

p∗k

)
. (23)

Because (23) holds for all n ∈ N , it follows that

∑
n∈N

vn(S∗
n)−

∑
k∈S∗n

p∗k >
∑
n∈N

∑
S∈2K

xn,S

(
vn(S)−

∑
k∈S

p∗k

)
. (24)

The property ∑
n∈N

vn(S∗
n) >

∑
n∈N

∑
S∈2K

xn,Svn(S),

25This is a version of the First Welfare Theorem that is adapted to linear programming problems in
the context of combinatorial auction problems. Its proof is especially tailored to fit the needs of the
combinatorial-auction-environment. What economists usually refer to as the First Welfare Theorem is
the following statement:
Any Walrasian equilibrium is Pareto-efficient.
An allocation is Pareto-efficient if no agent can be made better off without making any other agent worse
off (both in terms of the utility that an agent receives from an allocation).
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which concludes the proof of Theorem 1, can be deduced from (24) if the following property

can be established: ∑
n∈N

∑
k∈S∗n

p∗k >
∑
n∈N

∑
S∈2K

xn,S

∑
k∈S

p∗k. (25)

One obtains (25) as follows:

• Because S∗ is a feasible allocation of the set K, the left-hand-side of (25) is equal

to
∑K

k=1 p∗k.

• Feasibility of the LPR involves the condition∑
n∈N

∑
{S|k∈S}

xn,S 6 1 ∀k ∈ K.

Hence, the right-hand side of (25) satisfies

∑
n∈N

∑
S∈2K

xn,S

∑
k∈S

p∗k 6
K∑

k=1

p∗k.

2

After having seen that Walrasian equilibria actually attain the socially optimal net-utility-

level among the class of solutions to the LPR, we will now prove the reverse implication,

i.e. we will characterize a solution of the linear programming relaxation as a Walrasian

equilibrium. That is, at each of the solutions to the LPR, each player maximizes his own

self-interest, which is a very important stability-property of the solutions to the LPR.

Hence, no player has a unilateral interest to move away from the solution to the LPR.

Theorem 2 (Second Welfare Theorem) If an integral solution exists for the LPR,

then a Walrasian equilibrium (S∗, p∗) exists, where S∗ is the given solution and p∗ arises

from the solution to the dual problem.26

26This is a version of the Second Welfare Theorem that is adapted to linear programming problems
in the context of combinatorial auction problems. Its proof is especially tailored to fit the needs of the
combinatorial-auction-environment. What economists usually refer to as the Second Welfare Theorem is
the following statement:
For any Pareto-efficient allocation there exist prices p∗ such that the pair (S∗, p∗) is a Walrasian equilib-
rium.
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Proof of Theorem 2

The solution to the linear programming relaxation defines a feasible allocation S∗ =

(S∗
1 , ..., S

∗
N). By the duality theorem, one obtains the existence of a solution (p∗, q∗) =

(p∗1, ..., p
∗
N , q∗1, ..., q

∗
K) to the dual linear programming relaxation. Now, it will be shown

that the pair (S∗, p∗) constitutes a Walrasian equilibrium. This property will be derived

from complementary slackness which is necessary and sufficient for the optimality of

solutions to the primal as well as the dual linear programming problem.

• Given that xn,S∗n > 0 for some n ∈ N ,27 complementary slackness implies that

q∗n = vn(S∗
n)−

∑
j∈S∗n

p∗j

• Due to the fact that the condition

q∗n = vn(S∗
n)−

∑
j∈S∗n

p∗j

holds with equality, it follows that for any other bundle S

vn(S∗
n)−

∑
j∈S∗n

p∗j > vn(S)−
∑
j∈S

p∗j .

• Finally, it follows from another application of complementary slackness that in the

case ∑
n∈N ,S|j∈S

xn,S < 1,

i.e. in the situation in which item j is not allocated, one obtains p∗j = 0.

In sum, complementary slackness implies all properties to conclude that the pair (S∗, p∗)

is a Walrasian equilibrium.

2

The following corollary summarizes the content of the previous two theorem for the case of

our linear-programming-analysis of the combinatorial-auction-problem. It states a one-to-

one-relation between Walrasian equilibria and integral solutions to the linear programming

relaxation:

Corollary 1 A Walrasian equilibrium exists in a combinatorial-auction-environment if

and only if the corresponding linear programming relaxation admits an integral optimal

solution.
27By construction, this means that xn,S∗

n
= 1, i.e. bundle S∗n is assigned to bidder n.
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1.7 Ascending Bundle-Price Auctions

In order to complete the treatment of combinatorial auction problems, we will cover

Bundle-Price Auctions as an alternative mechanism to Item-Price Auctions that have

been covered before. This section is mainly designed as a cursory overview of the results

that arise in the context of this auction-format. Hence, only the relevant definitions, two

algorithms and the most important results are stated and all proofs are omitted.28

Observe the following important difference in the approach of the analysis:

• In the previous analysis, we have always considered a set of prices for each item.

Bundle-prices have been obtained as the sum of the prices of the items that are

contained in the bundle.

• Now, we are assuming a set of prices of cardinality 2K , i.e. a separate price for each

bundle.

Interestingly, the results concerning the comparison between value and demand queries

as well as the efficiency analysis of solutions to the relaxed linear programming problems

continue to hold under this change.

1.7.1 Personalized Bundle-Prices

Algorithm

• Initialization

∀n ∈ N , set pn(S) = 0 ∀S ∈ K.

• Loop

1. Determine the feasible allocation T = (T1, ..., TN) that maximizes revenue at

current prices, i.e. T satisfies

N∑
n=1

pn(Tn) >
N∑

n=1

pn(Yn)

for any other feasible allocation Y = (Y1, ..., YN).

(For bundles whose prices are zero, the auctioneer is indifferent between allo-

cating the bundle to a bidder or not. In this case, we will assume that the

auctioneer will always decide not to allocate the bundle. In consequence, we

can assume that the prices for all allocated bundles are strictly positive.)

28The proofs can be found in chapter 11 of the textbook, [NRTV08]. Moreover, one property is taken
from Assignment 3 whose solution is available on the class-webpage.
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2. Determine the set of bidders L satisfying

L
4
= {n|Tn = ∅}.

These are the bidders which are not allocated any bundle by the auctioneer

who aims at revenue-maximization, the so-called losing bidders.

3. For every n ∈ L, determine Dn
4
= Dn(pn), bidder n’s demand at his current

price-function pn.

– If Dn = ∅ for all n ∈ L, then terminate and output S∗ = T .

– For all n ∈ L for which Dn 6= ∅, set

pn(Dn)← pn(Dn) + ε.

That is, the price for those objects that are in bidder n’s demand is raised

by ε.29

Definition 5 A set personalized bundle-price function (p1(·), p2(·), ..., pN(·)) in combi-

nation to an allocation S = (S1, ..., SN) is called a competitive equilibrium in a

bundle-price setting iff:

1. For every bidder n ∈ N , Sn is bidder n’s demand at prices pn(·), i.e. for any other

bundle T ⊆ K
vn(Sn)− pn(Sn) > vn(T )− pn(T ).

2. The allocation S maximizes seller’s revenue given price-functions (p1(·), p2(·), ..., pN(·)),
i.e. for any other feasible allocation T1, ..., Tn one obtains

n∑
i=1

pn(Sn) >
n∑

i=1

pn(Tn)

Proposition 8 In any competitive equilibrium ((p1(·), p2(·), ..., pN(·)), S) in a bundle-

price setting, the allocation S maximizes social welfare.

Definition 6 A bundle S ∈ 2K is an ε-demand under the price-function pn for

bidder n iff

for any other bundle T ∈ 2K

vn(S)− pn(S) > vn(T )− pn(T )− ε.

29Of course, this gives the auctioneer the possibility to increase its revenue and, at the same time,
makes it possible that bidder n will no longer demand the particular bundle.
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Definition 7 A set personalized bundle-price function (p1(·), p2(·), ..., pN(·)) in combina-

tion to an allocation S = (S1, ..., SN) is called an ε-competitive equilibrium in a

bundle-price setting iff:

1. For every bidder n ∈ N , Sn is bidder n’s ε-demand at prices pn(·).

2. The allocation S maximizes seller’s revenue given price-functions (p1(·), p2(·), ..., pN(·)),
i.e. for any other feasible allocation T1, ..., Tn one obtains

n∑
i=1

pn(Sn) >
n∑

i=1

pn(Tn)

Proposition 9 An ascending bundle-price auction with bidder-specific prices terminates

with an ε-competitive equilibrium. The welfare obtained from this auction is within nε

from the optimal social welfare.

1.7.2 Anonymous Bundle-Prices

Algorithm

• Initialization

∀n ∈ N , set p(S) = 0 ∀S ∈ K.

• Loop

1. Determine the feasible allocation T = (T1, ..., TN) that satisfies the following

two conditions:

It maximizes revenue at current prices, i.e. T satisfies

N∑
n=1

p(Tn) >
N∑

n=1

p(Yn)

among the set of allocations Y = (Y1, ..., YN) satisfying

vn(Yn)− p(Yn) > 0

The last condition guarantees that bidders who are assigned a bundle by the

auctioneer actually prefer possessing this bundle over not obtaining any bundle

at the current price schedule p(·).
(For bundles whose prices are zero, the auctioneer is indifferent between allo-

cating the bundle to a bidder or not. In this case, we will assume that the

auctioneer will always decide not to allocate the bundle. In consequence, we

can assume that the prices for all allocated bundles are strictly positive.)



Economics and Computation Fall 2008 Combinatorial Auctions 39

2. For all n ∈ N , the

• Determine the set of bidders L satisfying

L
4
= {n|Tn = ∅}.

These are the bidders which are not allocated any bundle by the auctioneer who

aims at revenue-maximization, the so-called losing bidders.

• For every n ∈ L, determine Dn
4
= Dn(p), bidder n’s demand at the current price-

schedule p(·).

– If Dn = ∅ for all n ∈ L, then terminate and output S∗ = T .

– For all n ∈ L for which Dn 6= ∅, set

p(Dn)← p(Dn) + ε.

That is, the price for those objects that are in bidder n’s demand is raised by

ε.30

Proposition 10 When the valuations of all participating bidders are super-additive, the

anonymous price-variant of the bundle-price ascending auction terminates with the so-

cially efficient allocation.
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