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1. Consider a sponsored search auction. The click-through rate µi is
assumed to only depend on the position i of the link and we have

µ1 ≥ µ2 ≥ · · · ≥ µk > 0.

There are n > k competitors and the value of competitor j per click
is vj > 0 and for simplicity assume

v1 ≥ v2 ≥ · · · ≥ vn > 0

The sponsor (Google, Yahoo, etc.) considers running a first price
rather than a second price auction for the sponsored search. The
auction format considered therefore ranks the bids bj such that:

b1 > · · · > bn ≥ 0,

and the equilibrium revenue for each bidder is

µi (vi − bi) .

Consider the complete information environment in which the valua-
tions of all the bidders are common knowledge. Suppose further that
the search engine is running a first price auction with the tie-breaking
rule that if two bidders make the same bid, then the bidder with the
higher valuation is awarded the position with probability one (this is
referred to as an efficient tie-breaking rule).
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(a) Describe the necessary equilibrium conditions which have to hold
for a pure strategy Nash equilibrium.
We first show that the equilibrium, if it exists must have
an efficient allocation. Suppose not, i.e. bi < bi+1, then
in equilibrium we would have for some k, k′and

µk > µk′ and vi > vi+1, (1)

the following equilibrium utilities:

µk′ (vi − bi) and µk (vi+1 − bi+1)

and by the equilibrium hypothesis, we also have

µk′ (vi − bi) ≥ µk (vi − bi+1)

and
µk (vi+1 − bi+1) ≥ µk′ (vi+1 − bi) .

But adding the above two inequalities we get

(µk′ − µk) (vi − vi+1) ≥ 0

which is a contradiction to the hypothesis in (1). Now
given that we must have an efficient allocation it follows
that the winner in position i would never want to pay
more than the winner in position i + 1 in the efficient
tie-breaking rule, and thus we get

bi = bi+1. (2)

(b) Derive the equilibrium prices that the bidders will pay in a pure
strategy Nash equilibrium.
With the insight from (2), we find that

b1 = ... = bk = bk+1

and since the marginal looser would also bid up to this
valuation of the click we have

b1 = ... = bk = bk+1 = vk+1
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(c) Does there always exist a pure strategy Nash equilibrium? Give
a precise argument for your assertion.
Now we conclude by observing that since in equilibrium
all slots will have to pay the same price, it must be that
they are all equally valuable, and hence there is only a
pure strategy Nash equilibrium if

µ1 = µ2 = · · · = µk > 0,

and hence almost always there does not exists a pure
strategy Nash equilibrium.

2. We considered the notion of reputation in class. Consider the following
normal form stage game:

C D
C 2, 2 0, 3
D 3, 0 1, 1

(a) Describe the Nash equilibrium in the static game given by the
normal form above.
This is a version of the Prisoner’s Dilemma game and

it can be solved by dominant strategies and the unique
Nash equilibrium of this game, pure or mixed is (D,D).

(b) Suppose now that the game is repeated finitely many times and
ends after T periods, with 1 < T < ∞. The discount factor δ
satisfies 0 < δ < 1. Does there exist a Nash equilibrium (in every
subgame) which leads to play that is different from the prediction
of the Nash equilibrium of the static game? Argue carefully.
We would like to support an outcome different from

(D,D). But now notice that with a finite horizon, we
can solve this game by (backward) induction. The only
equilibrium game in the final period T is (D,D). Thus
in period T − 1, the players can anticipate the play in
period T , and as it is independent of the play in the
current period, the current period is like the last period,
and now by induction it follows that in all periods, the
play will have to be (D,D) to form a Nash equilibrium in
every subgame.
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(c) Suppose now that the stage game is repeated infinitely often, so
T = ∞ and the discount factor δ satisfies 0 < δ < 1. Specify a
complete strategy (i.e. for all possible histories of the game) for
the repeated game in which a player chooses C in every period
as long as all the players cooperated perfectly in the past and
punishes failure to play C (by the other player or by herself) with
playing D for a some finite number of periods N , and reverts back
to play C if the players have followed the punishment phase for
N periods.
The following is a complete specification of a repeated

game strategy with the desired property:

si =



C, if h0 = ∅,
C, if ht = {CC, ...., CC} ,

C, if ht =

....,

N times︷ ︸︸ ︷
DD, ...., DD,

 ,

C, if ht =

....,

N times︷ ︸︸ ︷
DD, ...., DD, CC, ..., CC

 ,

D, if else.

(d) For a given number N (after which players forgive each other),
can you compute a discount factor δ such that the strategy de-
scribed in (c.) actually forms a Nash equilibrium (in every sub-
game)?
We have to compute the no profitable deviation property
along the equilibrium path

2
1− δ

≥ 3 + δ
(
1 + ... + δN−1

)
1 + δN+1 2

1− δ

and it is immediate that we can cancel and get

2
(
1 + ... + δN

)
≥ 3 + δ

(
1 + ... + δN−1

)
1

or
δ
(
1 + ... + δN−1

)
1 ≥ 1

or

δ
1− δN

1− δ
≥ 1
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or
2δ − 1 ≥ δN+1. (3)

3. This question concerns the simple model of price formation in an in-
formation market given in Chapter 26 of AGT. The description of the
model follows. There are n traders, each with a single bit xi of private
information; we use x to denote the vector (x1, x2, . . . , xn). We are in-
terested in learning the value of a Boolean function f : {0, 1}n → {0, 1}
of the combined information x. To do this, we set up a market in a
security F that will pay $1 if f(x) is ultimately revealed to be 1 and
$0 otherwise. The form of f (description of the security) is common
knowledge among agents. The xi are referred to as input bits. We
assume that there is a prior distribution on the input bits and that it,
too, is common knowledge among agents.

The market proceeds in synchronous rounds. In each round, each agent
i submits a bid bi and a quantity qi. The semantics are that agent i
is supplying a quantity qi of the security and an amount bi of money
to be traded in the market. For simplicity, we assume that there are
no restrictions on credit or short sales, and so an agent’s trade is not
constrained by her possessions. The market clears in each round by
settling at a single price that balances the trade in that round: The
clearing price is p =

∑
i bi/

∑
i qi. At the end of the round, agent i

holds a quantity q′i proportional to the money she bid: q′i = bi/p. In
addition, she is left with an amount of money b′i that reflects her net
trade at price p: b′i = bi − p(q′i − qi) = pqi. Note that agent i’s net
trade in the security is a purchase if p < bi/qi and a sale if p > bi/qi.

After each round, the clearing price p is publicly revealed. Agents
then revise their beliefs according to any information garnered from
the new price. The next round proceeds as the previous. The process
continues until an equilibrium is reached. In order to force trade, we
assume that qi = 1 for each agent i.

Chapter 26 of AGT gives a necessary and sufficient condition on f
such that, for any prior distribution on x, the equilibrium price of F
will reveal the true value of f(x).

(a) Agents in this model are assumed to be risk-neutral, myopic, and
truthful. Give brief definitions of each of these three terms.
Risk-neutral agents are those who seek to maximize

their expected payoff. Myopic agents treat each round
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as if it were the final round; they do not reason about
how their bids may affect the bids of other agents in fu-
ture rounds. Truthful agents are those who always bid
their current valuations of the security (rather than lying
about their current valuations in a strategic effort to in-
fluence the equilibrium price); in this model, an agent’s
current valuation is simply his current estimation of the
expected value of the security.

(b) Show how to use this simple model to predict the results of
an election in which there are two candidates. That is, give a
Boolean function f that captures the semantics of a two-way
election and prove that it satisfies the sufficient condition under
which the equilibrium price of F will reveal the true value of f(x).
For simplicity, assume that the number n of bidders is odd.
Let f be the majority function; that is, f(x1, . . . , xn) is

1 if and only if at least n/2 of the input bits xi are 1.
(Because we’ve made the simplifying assumption that n
is odd, that means that f(x1, . . . , xn) is 1 if and only if
more of the input bits are 1 than are 0.) This captures
the semantics of a two-way election, because the 0 inputs
correspond to candidate A and the 1 inputs correspond
candidate B; the majority function f will evaluate to 0
on vectors x that correspond to wins by A, and f will
evaluate to 1 on vectors x that correspond to wins by B.
Theorem 26.12 tells us that the price-formation process
described above will converge to the correct answer in
this case, because this f is a weighted threshold function:
Let ω0 = 0 and ωi = 2/n, for 1 ≤ i ≤ n; then, f(x1, . . . , xn) ≡
ω0 +

∑
1≤i≤n ωixi ≥ 1 if and only if the majority of the

inputs bits are 1 (i.e., if and only if the input vector
x corresponds to a win by candidate B). Because of our
assumption that n is odd, we could also use ωi = 2/(n+1).

(c) For the Boolean function f that you provided in 3b, show how
the price-formation process reveals the value of f(x) on the input
vector (0, 1, 0, 0, 1) and the uniform common prior. That is, give
the bids of each agent in each round and the clearing price in each
round, give the equilibrium price, and explain why the process
terminates when it does.
For clarity, we will express bids and clearing prices in
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fractions of $1 rather than in cents. In round 1, agents
1, 3, and 4 will each bid 5/16, because five out of the 16
equally probable observations by the other four agents
contain at least three 1’s. On the other hand, each of
agents 2 and 5 will bid 11/16 in round 1, because 11 out
of the 16 equally probable observations by the other four
agents contain at least two 1’s. Thus the clearing price in
round 1 will be (5/16+11/16+5/16+5/16+11/16)/5 = 37/80.
From this clearing price, all agents will be able to deduce
that two input bits are 1 and that three are 0; thus they
will all bit $0 in round 2, and the process will converge
with an equilibrium price of $0. The reason that they
can all deduce that exactly two input bits are 1 is that
there are exactly six possible clearing prices: 1/16 = 5/80
(corresponding to zero input bits that are 1), 31/80 (cor-
responding to one 1), 37/80 (corresponding to two 1s),
43/80 (corresponding to three 1s), 49/80 (corresponding
to four 1s), and 11/16 = 55/80 (corresponding to five 1s).
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