
CPSC 455/555 // ECON 425/563, Fall 2011
Solution Set for Exam 1

Some of these answers are considerably longer and more detailed than answers needed to be to
earn full credit. The additional information is provided so that anyone who answered a question
incorrectly can read a full explanation of what the question was getting at.

Question 1:
(a) As we argued in class, any Nash equilibrium (NE) of this game must be connected. Thus, if
G = (V,E) were a NE that is not a tree, it would have to contain a cycle. Let s = (s1, . . . , sn) be
a strategy vector that results in G, where n = |V (G)|. Let x0 − −x1 − − · · · − −xk−1 − −x0 be
a cycle in G, and choose the numbering of these nodes in the cycle so that there is an xi whose
strategy in s includes the purchase of edge e = xi − −xi+1 mod k. We claim that xi could lower
its total cost by not purchasing e, thus lowering the edge-purchasing component of its total cost
by α. We need to show that not purchasing e increases the shortest-path component of xi’s total
cost by less than α. Let y 6= xi be any other node in V . If there is a shortest path from xi to
y in G that does not use the edge e, then the part of xi’s shortest-path cost that’s contributed
by its distance from y does not increase as a result of xi’s not purchasing e. So, assume that all
shortest paths from xi to y in G are of the form eP and that P has length p. Then there is a path
xi −−xi−1 mod k −− · · · − −xi+1 mod k −−P to y in (V,E − {e}) that “goes the other way around
the cycle to xi+1 mod k” before setting off on P and has length k− 1+ p; note that this may or may
not be a shortest path (and, in fact, may or may not be a simple path), but its existence proves
that a shortest path from xi to y in (V,E−{e}) has length at most k−1+p. Thus, not purchasing
e will increase xi’s total cost by at most k − 1 for each such y. Now, k ≤ n, and there are at most
n− 1 such y’s. Thus, not purchasing e increases the shortest-path component of xi’s total cost by
at most (n − 1)2 < n2 < α. This means that strategy vector s is not stable and, because s was
chosen arbitrarily, that G is not a NE of the local connection game.
(b) Because this instance is a tree in which the si’s are all at the root and each leaf contains a
single ti, there is a unique path from si to ti, for 1 ≤ i ≤ k = 4. This set of paths is the unique NE
of the game. Therefore, both the Price of Anarchy and the Price of Stability are 1.

Question 2:
(a) Yes, it will converge, because this instance obeys the Gao-Rexford constraints. No, the stable
routing tree on which it converges is not optimal. It converges on the set of routes {1 − −d,
2−−d, . . . , n−−d, n+1−−n−−d, n+2−−n+1−−n−−d}, in which the sum of the valuations
is 2n+1. In the set of routes {1−−d, 2−−3, . . . , n−−d, n+1−−1−−d, n+2−−n+1−−1−−d},
which is the optimal tree, the sum of the valuations is n2 +n+1. The latter tree will not be chosen,
however, because AS n+1 will choose route n+1−−n−−d, export it to AS n+2, and, once in a
stable tree, never export n + 1−−1−−d to AS n + 2 (thus depriving AS n + 2 of the opportunity
to choose n + 2−−n + 1−−1−−d).
(b) According to the Gao-Rexford “scoping” constraints, AS 1 will export its peer route 1−−d to
its customer AS 2, but it will not export this route to its provider AS 4. Thus, AS 4 will not be
given the opportunity to choose route 4−−1−−d.

Note that this question said that the “route-export policies of source ASes 1, 2, 3, and 4
satisfy the Gao-Rexford scoping constraints.” It did not say that the ASes follow the Gao-Rexford

preference constraints. Partial credit was given for an answer that conveyed knowledge of the
Gao-Rexford preference constraints, but that was not the point of this question.

Question 3:
(a) MinWork is a VCG mechanism and therefore, by Theorem 9.17, is strategyproof.

Full credit was given to anyone who simply stated that MinWork is a VCG mechanism, but a
proof of this fact is given here.

We must first show that MinWork always produces an allocation that maximizes the sum of
the agents’ valuations. In any feasible allocation Z, each task is assigned to exactly one agent and
thus contributes exactly one additive term to the corresponding sum of the agents’ valuations of
Z. In any allocation produced by MinWork, this additive term is as large as possible, because it is
the negative of the smallest reported completion time for the task; thus the sum of these additive
terms, which is the overall sum of the agents’ valuations, is also maximized by MinWork. Next, we
must show that the MinWork payment functions are of the form required by VCG. Indeed, this is
the case, because

pi(A1, . . . , An) =
∑

zj∈Zi

min
i′ 6=i

ai′
j

=

∑
zj

min
i′ 6=i

ai′
j

−

 ∑
zj 6∈Zi

min
i′ 6=i

ai′
j

=

 k∑
j=1

min
i′ 6=i

ai′
j

−
∑
i′ 6=i

 ∑
zj∈Zi′

ai′
j

=

 k∑
j=1

min
i′ 6=i

ai′
j

 +
∑
i′ 6=i

vi′(Ai′ , Z)

and
∑k

j=1 mini′ 6=i a
i′
j has the required form h−i(A−i) for a VCG payment rule; that is, it does not

depend on Ai.
MinWork is also clearly polynomial-time computable. Let W be the maximum time needed

to add, subtract, or compare numbers in (A1, . . . , An); note that W is polynomial in the size
of this numerical input. Then, in time O(Wkn), MinWork can scan the input (A1, . . . , An) and
correctly assign each zj to an agent with smallest ai

j while keeping track of the value mini′ 6=i a
i′
j .

The payments pi(A1, . . . , An) =
∑

zj∈Zi mini′ 6=i a
i′
j can then be computed in time O(Wkn).

(b) For a given instance z1, . . . , zk, T
1, . . . , Tn, let ZMW be an allocation produced by MinWork

and Zopt be an optimal allocation. For any allocation Z, let TotalTime(Z) be the total amount
of time that all agents spend executing tasks assigned to them by Z, i.e., TotalTime(Z) =∑

1≤i≤n

∑
zj∈Zi tij . Because MinWork is strategyproof and assigns each task to an agent who can

execute it in the minimum reported time, we know that TotalTime(ZMW) ≤ TotalTime(Zopt). By
definition, Makespan(ZMW) ≤ TotalTime(ZMW), because, in the worst case for this comparison,
all tasks would be assigned to one agent. Similarly, TotalTime(Zopt) ≤ n ·Makespan(Zopt), because,
in any allocation, at least one of the n agents has to spend at least 1/n of the total time spent by
all agents. Thus,

Makespan(ZMW) ≤ TotalTime(ZMW) ≤ TotalTime(Zopt) ≤ n ·Makespan(Zopt),

2

and Makespan(ZMW) ≤ n · Makespan(Zopt) is exactly what it means for MinWork to produce an
n-approximately optimal allocation.
(c) The minimum-makespan problem is NP-hard. Thus, if P 6= NP, there is no polynomial-time
algorithm that solves it exactly; a fortiori, there are currently no known algorithmic techniques
that point the way toward such an algorithm. Strategyproofness is a red herring here; even if we
knew that all agents were acting truthfully, we still could not compute an optimal allocation exactly
in polynomial time.

Question 4:
(a) If S = {s1, . . . , sm}, and p1 ≥ p2 ≥ · · · ≥ pm is a sequence of prices such that the bidder’s value
of S is v(S) =

∑
1≤j≤m pj , then v() can be expressed as

ORm
j=1 (({s1}, pj) XOR ({s2}, pj) XOR · · · XOR ({sm}, pj)),

the size of which (i.e., the number of atoms in which) is m2. Definition 11.18 tells us that, if
the bidder receives bundle T = {si1 , . . . , sik}, he will assign it value

∑
1≤j≤k pj by, e.g., using the

({si1}, p1) atom of the first XOR clause in his bid to value si1 at p1, the ({si2}, p2) atom of the
second XOR clause in his bid to value si2 at p2, etc.
(b) This statement is clearly true for m = 1; so assume that m > 1. Recall that all valuation
functions in Chapter 11 satisfy v(∅) = 0 and are monotonic, i.e., v(S1) ≤ v(S2) for all S1 ⊆ S2. We
claim that an XOR bid that represents a symmetric, downward-sloping valuation function in which
the price sequence is strictly decreasing and greater than 0 must contain an atom (T, p) for each
nonempty subset T of S, of which there are 2m − 1. Suppose, by way of contradiction, that T is a
nonempty subset of S such that the XOR bid does not contain an atom (T, p). By Definition 11.18
and monotonicity, the bidder would then have to assign to T the value v(T ′) for some T ′ that is
a proper subset of T and for which his XOR bid contains an atom (T ′, p′); however, the definition
of “symmetric, downward-sloping” and the fact that p1 > p2 > · · · > pm > 0 together imply that
v(T) must be strictly greater than v(T ′) for any such T ′.

Question 5:
(a) See Definitions 14.4 and 14.5. This solution concept is weaker than dominant-strategy equi-
librium (DSE). In a DSE, each agent i would have to be able to maximize his utility by using s∗i
regardless of the strategies of the other agents, not only regardless of their types.
(b) See inequalities 28.9 and 28.10 and surrounding text in Section 28.3.2. As discussed in class,
Chapter 28 is vague about whether the pi are total prices or prices per click; full credit was given
for either if the rest of the definition provided is correct.
(c) The definition is given in Sections 1.3.3 and 1.3.4. Matching Pennies, which is Example 1.7, is
given in Section 1.1.4.

3

