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Question 1:
(a) Let G = (V,E, t) be a trust graph, as the term is defined in Section 27.5, and let v0 be a
distinguished “start node.”

See “Definition” 27.2 of the term sybil strategy. It order to complete it, we must define what
“collapse” means in this context. To “collapse U ′ into a single node labeled v,” do the following
for each x ∈ V ′ − U ′: Collapse all edges ixu = x → u in E′ such that u ∈ U ′ into a single edge
x → v with trust value t(x → v) =

∑
ixu

t′(ixu), and collapse all edges oux = u → x in E′ such that
u ∈ U ′ into a single edge v → x with trust value t(v → x) =

∑
oux

t′(oux).
Pathrankv(G) is the (weighted) distance from v0 to v. Here, the weight (or length) of a directed

edge e is the inverse of the trust value t(e). Note that, with respect to the Pathrank reputation func-
tion (unlike the max-flow and PageRank functions), smaller reputational values are more desirable
than larger ones.

max-flowv(G) is the maximum flow from v0 to v. Here, the capacity of e is simply t(e).

(b) If G is the trust graph in Figure 1, then max-flowv(G) = 2, and max-floww(G) = 2.25. So w
outranks v in G. In one very straightforward sybil strategy (G′, U ′), the sybil set U ′ = {v, u}. The
edge set E′ of G′ is identical to the edge set E of G except that v → w is not present in E′, and the
edge u → w is present. The trust function t′ of G′ is identical to t in G except that t(u → w) = 1,
and of course t′ is undefined on v → w, because the latter is not in E′. The trust graph G′ is
depicted in Figure 2. Now max-flowv(G′) = 2, and max-floww(G′) = 1.25. The reputational values
of all nodes in V except w are unchanged by this sybil strategy; because v outranks w in G′, it has
improved its rank.

There is no sybil strategy that v can use to improve its rank with respect to the Pathrank
reputation function, because Pathrank is rank-sybilproof. See Theorem 27.9 and HW5.

Question 2:
(a) See Definition 27.1.
(b) The logarithmic scoring rule of Sec. 27.4.2 is one example. Full credit will be given for any
correct answer.
(c) If one signal is highly likely, e.g., a good meal at a very highly rated restaurant, then a rater
who receives a different signal will achieve a higher expected payoff by lying than by reporting
truthfully.
(d) This SPNE is very “fragile.” If just one player deviates, even by mistake, then everyone will
play D forever, and the social efficiency will be lost.

Question 3:
(a) f is computable in this model. If n < k, then all agents know that f(x1, . . . , xn) = 1, and
no bidding or price announcements are needed. If n ≥ k, then the computation will converge to
the correct value of f , because f(x1, . . . , xn) = 1 if and only if

∑n
i=1 ωixi ≥ 1, where ωi = 1

k , for
1 ≤ i ≤ n.

g is not computable in this model. Suppose that n = 3 and that the common prior distribution
is uniform. There are just two input vectors on which g is 1, namely (0, 0, 0) and (1, 1, 1). For each
i, regardless of his input bit xi, agent i will bid 1

4 , because only 1 of the 4 equally likely pairs of



inputs of the other agents will cause g to be 1. The price announced after this one round of bidding
will be 1

4 , which conveys no information to any agent. Bidding will stop at this point, because the
process has converged on a price p∞, but this price is not the value of g on any input vector.
(b) This model does not capture strategic behavior by bidders, i.e., it assumes that all agents
bid truthfully in all rounds. It also assumes common knowledge of a prior distribution on the
input vector; in practice, it is not clear why this common knowledge would be available to a large
number of agents who may be geographically distributed and may not know each other. See the
paper “Computation in a Distributed Information Market” for a more in-depth discussion of the
strengths and weaknesses of the model.

Question 4:
(a) Cooperate in stage 0. In stage k + 1, cooperate if the other player cooperated in stage k, and
defect if the other player defected in stage k.
(b) See Theorem 2.6 and Example 2.3 in
www.seas.harvard.edu/courses/cs186/doc/2-game-theory.pdf, which were covered in Lecture
15, for the proof that this strategy profile is a NE for δ = .9. To see that it is not a SPNE, consider
the subgame that starts immediately after a stage in which the players play (D,D). If both play-
ers stick with tit-for-tat in that subgame, then they will both play D forever, and the discounted
average payoff to player 1 in the subgame will be π1 = (1 − .9)

∑∞
t=0(.9)t · 1 = (.1)( 1

1−.9) = 1. If
player 1 deviates to “play C for ever,” and player 2 sticks with tit-for-tat, then the players will
play (C,D) in the 0th stage of the subgame, after which they will both play C forever. Player
1’s discounted average payoff in the subgame would therefore be π1 = (1− .9)(0 +

∑∞
t=1(.9)t · 3 =

(.1)(3)(.9)
∑∞

t=0(.9)t = (.1)(3)(.9)( 1
1−.9) = 2.7.

(c) Sec. 3.3 of www.seas.harvard.edu/courses/cs186/doc/3-P2P-file-sharing.pdf, which was
covered in Lecture 16, gives examples of how a peer can benefit by deviating from the reference-
client strategy.
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