De-anonymizing Social Networks

Anton Petrov CS 457 10/11/11

Overview

- Anonymity does not equal privacy:
 - Anonymity is when your identity is hidden.
 - Privacy is having control over the access to your personal information.
 - Example: surfing with TOR vs. using SSL.
- Data sanitization only leads to anonymity.
- Availability of large datasets compromises privacy.
- Differential privacy as a possible solution.

Compromising privacy

- Corporations & government agencies do not keep data to themselves.
 - Using APIs to crawl and aggregate data.
 - Targeted advertising.
 - Third party applications.
 - Public datasets Census, Genome information on AWS.
- Sanitization
 - Changes to dataset prior to release.
 - NULL-ing.
 - Substitution.
 - Masking of data credit cards.

Compromised privacy examples

- Netflix 'breach' in 2007.
 - Prize of \$1,000,000.
 - Cross reference data with IMDB ratings.
 - Movie ratings unique after you eliminate top 100.
 - Note: users still anonymous but their privacy was compromised in the sense that users submitted their movie ratings to Netflix believing that those ratings would remain private.
- AOL fiasco 2006.
 - Meant for research. Once on the Internet, always on the Internet.
 - Semantic identification : Thelma Arnold.
 - User 927.
- Latanya Sweeney Linked medical records to US Census data and managed to retrieve medical record for governor of Massachusetts.

Narayanan & Shmatikov

- Main contribution: demonstrated large scale feasibility & introduced the idea of self-reinforcing feedback.
- Social network can be modeled using a (directed) graph:
 - Entities are represented by nodes & node attributes.
 - Relationships are represented by edges & edge attributes.
- Privacy
 - Node and edge attributes.
 - Who wants to breach users' privacy?
 - Classify attackers based on their capabilities & goals
 - Government
 - Agencies & advertisers
 - Creeps

Why is an active attack unfeasible?

- Active attack = creation of dummy nodes by adversary.
 - Fundamental assumption is that adversary can modify a network prior to its release.
- Prohibitively expensive.
- Dummy 'cluster' will have no incoming nodes => raise suspicion.
- Mutual link is required for the release of node & edge attribute information. Real users are unlikely to link to dummy nodes.
- Instead focus on passive attack.

The algorithm: notation & setup

- Social network, S, is modeled using a directed graph G = (V, E).
 - Set of attributes for each $v \in V$ denoted by X and similarly for edges, the set of edge attributes is denoted by Y.
- Researchers simulated a sanitized graph by picking a sub-graph of their crawled data and introducing some noise by removing edges and adding a few fake ones.
- Assumption is that adversary has access to an auxiliary network which has minimal overlap with the target network.
 - This is a very realistic assumption.
 - Access to an auxiliary network does not mean most of the work is already done.

The algorithm: notation & setup

- Auxiliary network information
 - Aggregate just a regular social network with nodes & edges.
 This information is used in 'propagation' stage of the algorithm.
 - Individual detailed information about a very small number of members of the target network.
 - Used in 'seed identification' stage of algorithm.
 - Adversary must be able to identify these entities in auxiliary aggregate network.
 - Not difficult to obtain this information.
- Main objective: node re-identification
 - Any subsequent privacy breach will be more effective if you have information about the end points of the edge.

The algorithm

- Seed identification brute force approach, search target graph for sub graph that corresponds to the individual auxiliary information obtained by adversary.
- Propagation takes as input the target and auxiliary graphs along with a seed mapping, obtained in the previous step.
 - Start with the accumulated list of mapped pairs between V1 & V2.
 - Pick an arbitrary unmapped node u in V1.
 - Compute a score for each unmapped node v in V2, equal to the number of neighbors of u that have been mapped to neighbors of v.
 - If the strength of the match is above a certain threshold then add the mapping to our set. Do the nodes have the same neighbors?
 - We could consider probabilistic mappings but a deterministic one would be easier to understand.

The algorithm

- Eccentricity
 - How much does an item X stand out from the rest?
 - $[max (X) max2 (X)] / \sigma (X)$
- Edge directionality?
 - Given that our graph is directed, we first compute score for incoming edges, then score for outgoing edges and then sum.
- Node degree?
 - The mapping scores will be biased in favor of nodes with a high degree. To compensate we divide score by square root of node degree.
- Measuring success
 - Do not use fraction of nodes identified singular node problem.
 - Instead use the concept of node centrality.
 - Measure importance of node using its degree.

All measurements were done with a node overlap of 25% and an edge overlap of 50%.

Self-reinforcement & feedback is crucial and needs a substantial initial seed.

Effect of noise. Node overlap 25%. Number of seeds 50.

[My] Solution

- Use the concept of differential privacy for graphs.
- Initially defined for statistical databases only.
 - Introduced by Cynthia Dwork.
 - Aggregate data into a database US Census is a great example.
 - Allow people to query that database and extract information in such a way that no individual record can be inferred.
- In a perfect world we would have an equivalent of semantic security for databases.
 - Impossible because an adversary will have auxiliary information.
 - Instead think of privacy as being differential:
 - Your participation in a database should not significantly increase the chance of you being exposed.

Differential Privacy

- Interactive vs. non-interactive
 - Curator sits between database & users.
 - Curator computes and publishes some statistics.
- Numerical definition
 - Pr[K(D1) ∈ S] ≤ exp(e) × Pr[K(D2) ∈ S]
 - D1 and D2 are data sets that differ by one element
 - K () is the randomizing function, S is Range (K())
- Sensitivity of some query f()
 - $\Delta f = \max \{D1, D2\} ||f(D1) f(D2)||$
 - How great a difference should be hidden by the noise
 - $K(X) = f(X) + (Lap(\Delta f/e))$

Differential Privacy for Graphs

- A Differentially Private Graph Estimator, Mir & Wright.
- Develop method of generating a synthetic graph that will give users a fairly accurate picture of the graph while preserving the privacy of individuals.
- Assuming that observed data is generated from an underlying (unknown) distribution, the paper suggests a technique of using the observed data to produce an estimator for the underlying distribution.
- Graphs can then be sampled from this distribution and hopefully they
 will have similar properties to the original.

Quick Conclusions

Lots of data.

- Lots of unsecured data that anyone can mine.
- Corporations & government agencies need to improve their data sanitization by starting to think about differential privacy.
- This problem will not go away data will keep growing.

Ze Questions

Bibliography

- N. Anderson. *Pulling back the curtain on "anonymous" Twitterers*. http://arstechnica.com/tech-policy/news/2009/03/pulling-back-the-curtain-on-anonymous-twitterers.ars/. Published: 03-31-09. Accessed: 10-09-11.
- N. Anderson. "*Anonymized*" data really isn't and here's why not. http://arstechnica.com/tech-policy/news/2009/09/your-secrets-live-online-in-databases-of-ruin.ars/. Published: 09-08-09. Accessed: 10-09-11.
- M. Darakhshan and R. Wright. *A Differentially Private Graph Estimator*. IEEE International Conference on Data Mining Workshops (2009), 122-129.
- C. Dwork. *Differential Privacy*. Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (invited), 2006
- C. Dwork. *Differential Privacy: A Survey of Results*. Proceedings of The 5th Annual Conference on Theory and Applications of Models of Computation (invited), 2008
- A. Narayanan and V. Shmatikov. *De-anonymizing Social Network*. http://www.cs.utexas.edu/~shmat/. Accessed: 10-09-11.
- B. Schneier. *Why 'Anonymous' Data Sometimes Isn't*. http://www.wired.com/politics/security/commentary/securitymatters/2007/12/securitymatters_121 3/ Published: 12-13-07. Accessed: 10-09-11.