Differential Privacy

CPSC 457/557, Fall 13 10/31/13 Hushiyang Liu

Motivation: Utility vs. Privacy

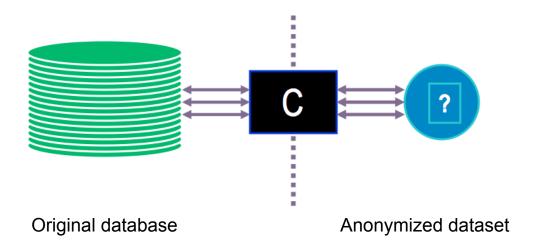
- Era of big data
 - large-size database
 - automatized data analysis
- Utility
 - "analyze and extract knowledge from data"
- Privacy
 - sensitive databases, e.g., census, medical, educational, financial, web traffic, OTC drug purchases, query logs, social networking etc.
- Achieve utility while maintain privacy
 - possible?
 - how?

Motivation: Assumption and Definition

- Analyze data in a privacy-preserving manner
 - assumption: resolved other threats
 - theft, phishing, viruses, cryptanalysis, changing privacy policies ...
 - definition of "privacy-preserving" ?

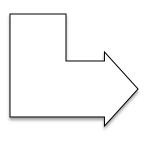
Motivation: Anonymization?

- "anonymized" or "de-identified"
 - clean off data that is directly linkable to identities
 - non-interactive method
 - vague definition but very broad potential impact (if achieved)



Motivation: Failure of Anonymization

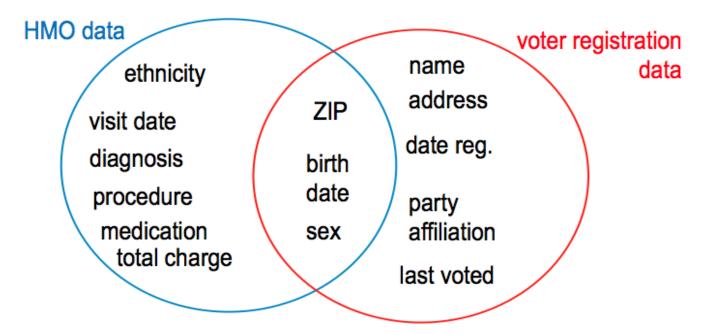
- Attack against Randomized IDs
 - AOL search data leak of an old woman in Georgia (New York Times, 2006)
 - searcher No. 4417749
 - "numb fingers"
 - "60 single men"
 - "dog that urinates on everything."
 - "landscapers in Lilburn, Ga"
 - ..



- Thelma Arnold
- a 62-year-old widow
- frequently researches medical ailments
- loves her three dogs
- lives in Lilburn, Ga.

Motivation: Failure of Anonymization

- Linkage attack: cross-referencing with auxiliary information
 - Massachusetts Governor's medical record linked "anonymized" HMO data to voter registration data (Latanya Sweeney, 1997)



Motivation: Definitional Failures

- Failure to define privacy
 - failure to account for auxiliary information
 - syntactic and ad hoc
- Need a semantic and "ad omnia" definition that composes automatically and obliviously with (past and future) information

Motivation: Dalenius's Ad Omnia Guarantee

- Dalenius's Ad Omnia Guarantee [Dalenius1977]
 - "Anything that can be learned about a respondent from the statistical database can be learned without access to the database."
 - prior and posterior views about an individual shouldn't change too much
- Provably unachievable [Dwork2006]
 - deductive results
 - "smoking causes cancer" (utility of a database)
 - "Jim smokes" (auxiliary information)
 - "Jim has cancer" (privacy breach!)
 - harm is independent of whether one is in the database

Motivation: Back to Definitional Failures

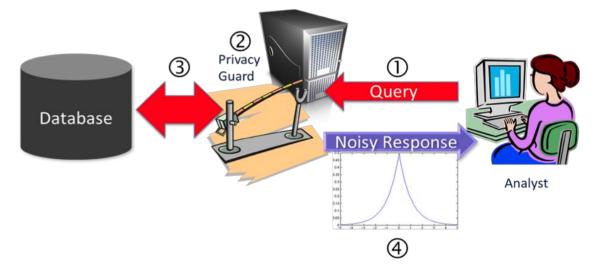
- Need a semantic, "ad omnia", and achievable definition that composes automatically and obliviously with (past and future) information
 - whether or not an analyst interacts with a database => whether or not an individual joins a database
 - differential privacy

Differential Privacy

- Definition/Goal: The risk to one's privacy (or in general, any type of risks) should not substantially increase as a result of participating in a statistical database
 - individual privacy
 - privacy budget
 - two "worlds" associated with two databases which differ in only one individual data point (neighboring databases)
- "Differential" refers to the difference between two "worlds"
- Allows for the release of data while meeting a high standard for privacy protection

Differential Privacy

- Method
 - analyst sends a query to a trusted privacy guard
 - the guard assesses its privacy impact using a special algorithm
 - the guard sends the query to the database and gets back a true answer to that query
 - the guard adds "noise", scaled to the privacy impact, to the answer, and sends the result to the analyst



Algorithm: Basics

- ε-differential privacy for a given result r
 - two neighboring databases D1 and D2
 - cannot tell if a result r is from database D_1 or D_2
 - ratio of probabilities should be bounded by e[^]ε, where ε is a small positive number

$$\frac{P(result = r | true world = D_1)}{P(result = r | true world = D_2)} \le e^{\varepsilon}$$

Algorithm: Basics

- Global sensitivity Δf
 - f is the *query function* which maps a database to a vector of values (result)

$$\Delta f = \max_{D_1, D_2} \|f(D_1) - f(D_2)\|_1$$

- Δf is a property of the query function alone
- sum of the worst-case differences in answers that can be caused by adding or removing one individual from the database
- a simple example in which the dimension of the result vector is 1
 - f = "how many students scored 100 in the final exam of CS557", D1 = "all students in CS557", D2 = "all students in CS557 except Melody"

 $-\Delta f = 1$

assume that the dimension of the result vector is 1 in the following slides

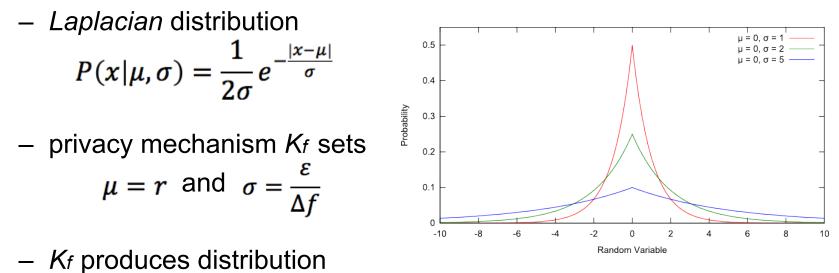
Algorithm: Privacy Mechanism

- Add noise to fill the sensitivity gap
 - K_f, a privacy mechanism for a query function f, generates privatized result by computing the real result f(D) and then adding a noise
 - *K_f* produces a similar distribution of privatized result for two worst-case neighboring databases
 - distributions of possible results from neighboring datasets overlap heavily with each other

$$\frac{P(K_f(D_1) = r)}{P(K_f(D_2) = r)} \le e^{\varepsilon}$$

Algorithm: Choice of Noise

• Laplacian noise is an easy way to achieve it



$$P(\mathbf{K}_f(D) = r) = \frac{\varepsilon}{2\Delta f} e^{-\frac{|f(D)-r|\varepsilon}{\Delta f}}$$

- proved in [Dwork2006] that for any pair of neighboring databases D_1, D_2 $P(K_f(D_1) = r)$

$$\frac{P(\mathcal{K}_f(D_1) = r)}{P(\mathcal{K}_f(D_2) = r)} \le e^{\varepsilon}$$

Algorithm: Privacy Budget

- ε privacy budget
 - "Privacy is a nonrenewable resource."
 - predefined privacy variance 1/ε
 - smaller ε means higher privacy
- Interactive queries
 - a series of k queries asked by the analyst
 - add noise with variance k/ε to each query [Dwork2006]
 - protect against attack by averaging repeated queries

$$\frac{P(\mathsf{K}_f(D_1) = r)}{P(\mathsf{K}_f(D_2) = r)} \le e^{\varepsilon}$$

Algorithm: Many Others For Better Usage

- When noise makes no sense
 - the function f maps databases to strings, strategies, or trees
 - Exponential Mechanism [MT2007]
- Other algorithms to deal with different cases
 - Statistical Interference
 - Contingency Table Release
 - Halfspace Queries

- ...

Application

- Low-error high-privacy DP techniques are applied in
 - Binary Decision Trees
 - Network Trace Analysis
 - Click Query Graphs
 - K-Core Clustering
 - Combinatorial Optimization
 - Frequent Itemset Mining
- Programming platform
 - Privacy Integrated Queries (PINQ) [McSherry2009]

•

Comment: Evolution

- Underlying data in database remains intact
- Distortion is introduced a posteriori
- Keep track of the cumulative privacy cost
- Good abstraction for analysts to use
- Resilience to all auxiliary information

Comment: Limitation

- Narrowness of definition of privacy
 - does not guarantee absolute privacy: deductive results
 - does not guarantee privacy of cohesive group
- Tensions between privacy and utility
 - overwhelming noise
- Complexity of queries
 - "the mean of scores"
- •

Discussions

- Do you have a "solution" to the problems of "overwhelming noise" or "complex queries" in DP?
- Can you suggest an alternative protection method? One with a broader definition of privacy?

Discussions

- Do you have a "solution" to the problems of "overwhelming noise" or "complex queries" in DP?
 - ask fewer questions, prune off answers by yourself
 - use result from query with lower sensitivity
- Can you suggest an alternative protection method? One with a broader definition of privacy?

References

- 1. Fayyad, Usama, Gregory Piatetsky-Shapiro, and Padhraic Smyth. "From data mining to knowledge discovery in databases." AI magazine 17.3 (1996): 37. [FPS1996]
- 2. Dwork, Cynthia. "A firm foundation for private data analysis." Communications of the ACM 54.1 (2011): 86-95. [Dwork2011]
- 3. Barbaro, Michael, Tom Zeller, and Saul Hansell. "A face is exposed for AOL searcher no. 4417749." New York Times 9.2008 (2006): 8For. [BZH2006]
- 4. Dalenius, Tore. "Towards a methodology for statistical disclosure control." Statistik Tidskrift 15.429-444 (1977): 2-1. [Dalenius1977]
- 5. Dwork, Cynthia. "Differential privacy." Automata, languages and programming. Springer Berlin Heidelberg, 2006. 1-12. [Dwork2006]
- Microsoft Corporation. "Differential Privacy for Everyone." Retrieved by 2013, <u>http://www.microsoft.com/en-us/download/details.aspx?id=35409</u>
- 7. Dwork, Cynthia. "Differential privacy: A survey of results." Theory and Applications of Models of Computation. Springer Berlin Heidelberg, 2008. 1-19. [Dwork2008]
- 8. McSherry, Frank, and Kunal Talwar. "Mechanism design via differential privacy."Foundations of Computer Science, 2007. FOCS"07. 48th Annual IEEE Symposium on. IEEE, 2007. [MT2007]
- McSherry, Frank D. "Privacy integrated queries: an extensible platform for privacy-preserving data analysis." Proceedings of the 2009 ACM SIGMOD International Conference on Management of data. ACM, 2009. [McSherry2009]
- 10. Task, Christine. A Practical Beginners" Guide to Differential Privacy. CERIAS Seminar. Purdue University, 2012. [Task2012]
- 11. Narayanan, Arvind, and Vitaly Shmatikov. "Robust de-anonymization of large sparse datasets." Security and Privacy, 2008. SP 2008. IEEE Symposium on. IEEE, 2008. [NS2008]
- 12. Backstrom, Lars, Cynthia Dwork, and Jon Kleinberg. "Wherefore art thou r3579x?: anonymized social networks, hidden patterns, and structural steganography." Proceedings of the 16th international conference on World Wide Web. ACM, 2007. [BDK2007]
- 13. Narayanan, Arvind, and Vitaly Shmatikov. "De-anonymizing social networks."Security and Privacy, 2009 30th IEEE Symposium on. IEEE, 2009. [NS2009]

Thank you

Hushiyang Liu hushiyang.liu@yale.edu