A low auto payment is only a few clicks away

Refinance your auto loan—see if you qualify for a lower monthly payment in minutes.

Get started
X.509 Outline

- X.509 Overview
- Certificate Lifecycle
- Alternative Certification Models
What is X.509?

- The most commonly used Public Key Infrastructure (PKI) on the web
- Public Key Infrastructure
 - Create, manage, distribute, and store certificates
- Certification Validation Path Algorithms
- Certificate Lifecycle Management
 - Certificate Revocation Lists
Assumptions and Goals

- Users of certificates will utilize them in a variety of environments
 - Certificates should be nonspecific in regards to environment
- Users of PKI will not necessarily be technologically sophisticated
 - Need for automated and deterministic forms of authentication and identification
- Large number of security dimensions/attributes
 - Minimize chances that CA administration mistake will result in broad compromise
 - Decrease the number of configuration choices necessary
X.509 Architecture

- **End entity**
 - Subjects or users of PKI certificates
- **Certification Authority (CA)**
 - Issues and signs certificates
 - Certification Practice Statement determined by each CA
- **CRL issuer**
 - May be the same entity as CA
- **Repository**
 - System that stores certificates and CRLs
 - Distributes them as necessary to end entities
Commercial Certification

- On the local level:
 - Extremely fragmented

- For websites:
 - Most use SSL certificates
 - Significant barriers to entry
 - Symantec - 42.9%
 - Comodo Group - 26%
 - Go Daddy - 14%
 - Global Sign - 7.7%
Certificate Structure

- Certificate
 - Version
 - Subject
 - Issuer
 - Public key for Subject
 - Validity period
 - Not Before
 - Not After
- Signature Algorithm
- Signature Field

Must be Distinguished Names:
- Unique identifier in CA’s domain
- Can contain
 - Country
 - Organization
 - State or Province
 - Common name
 - Serial Number
Extensions

- Allow for flexibility of certificates to contain additional fields
 - Critical vs. Non-critical extensions

- Common Extensions:
 - Authority Key Identifier - means of identifying public key corresponding to private key used to sign
 - Subject Key Identifier - identify certificates that contain particular public key
 - Key Usage - defines purpose of key
 - Certificate Policy information
Certificate Lifecycle

- Once a CA verifies the credentials of a user, it can create and issue a certificate for that user
 - Policy matter - context dependent
- After certificates are issued, they are either renewed or allowed to expire
- Can be revoked if:
 - CA has been compromised
 - User’s secret key was leaked
 - Name was changed
Certification Revocation List (CRL)

- Two major types of CRLs
 - Complete CRL - signed and time-stamped list identifying revoked certificates
 - Delta CRL - used for updates to the complete CRL
- Published periodically at defined interval

- Issues
 - Mistakes in revocation list
 - Access to most current CRLs
 - No guarantee that all certificate copies will be revoked
Comparisons to X.509

- PGP (Web of Trust model)
 - Introducer Model - users are referred from one user to another (creating a “web”)
 - Updates to the web are found by users themselves
 - No guarantee if or when the web will be up-to-date
 - No centralized entity
 - Not scalable, but potentially preferable in a small group

- X.509
 - Users trust CAs, rather than each other (transitive trust)
 - Hierarchical certification validation from centralized entities
 - Updates managed by CAs
 - Scalable
Practical Implications of X.509

- Each browser has a built in set of predetermined “trusted root CAs” to facilitate SSL transactions
 - The browser developers determine the primary CA’s that are trusted third parties to the users

- The Internet is all about decentralization, but X.509 relies on a few number of centralized authorities.
 - Usage of duplicate RSA-moduli keys, man-in-the-middle attacks, etc. have all occurred in the last few years
 - Can we trust them? If not, what alternatives do we have?
 - Is this an issue? Do we need a large number of providers?