Interdomain Routing

Establish routes between autonomous systems (ASes).

Currently done with the Border Gateway Protocol (BGP).
Why is Interdomain Routing Hard?

- Route choices are based on local policies.
- Autonomy: Policies are uncoordinated.
- Expressiveness: Policies are complex.
BGP Route Processing (1)

• The computation of a single node repeats the following:

 Receive routes from neighbors → Update Routing Table → Choose “Best” Route → Send updates to neighbors

• Paths go through neighbors’ choices, which enforces consistency.

• Decisions are made locally, which preserves autonomy.

• Uncoordinated policies can induce protocol oscillations. (Much recent work addresses BGP convergence.)

• Recently, private information, optimization, and incentive-compatibility have also been studied.
BGP Route Processing (2)

Open-ended programming: constrained only by vendor configuration language
Example: Convergence

1

2

Prefer routes through 2

Prefer direct route to d

d
Example: Convergence

Prefer direct route to d

Prefer routes through 2
Example: Convergence

Prefer routes through 2

Prefer direct route to d
Example: Oscillation

BGP might oscillate forever between

1d, 2d and 12d, 21d
Example: Oscillation

BGP might oscillate forever between

1d, 2d
and
12d, 21d
Example: Oscillation

BGP might oscillate forever between $1d, 2d$ and $12d, 21d$.
Example: Oscillation

BGP might oscillate forever between 1d, 2d and 12d, 21d

Prefer routes through 1

Prefer routes through 2
Example: Convergence

1

2

d

Prefer routes through 2

Prefer routes through 1
Example: Convergence

Prefer routes through 2

Prefer routes through 1

1

2

d
Example: Convergence

1 - Prefer routes through 2

2 - Prefer routes through 1

d
Dispute Wheels

Nodes u_i, hub routes R_i, and spoke routes Q_i. Each u_i prefers $R_i Q_{i+1}$ to Q_i.

“No dispute wheel”

\rightarrow

robust convergence
Gao-Rexford Framework (1)

Neighboring pairs of ASes have one of:

- a *customer-provider* relationship
 (One node is purchasing connectivity from the other node.)

- a *peering* relationship
 (Nodes have offered to carry each other’s transit traffic, often to shortcut a longer route.)
Gao-Rexford Framework (2)

- **Global constraint**: no customer-provider cycles
- **Local preference** and **scoping constraints**, which are consistent with Internet economics:

 Preference Constraints
 - If k_1 and k_2 are both customers, peers, or providers of i, then either ik_1R_1 or ik_2R_2 can be more valued at i.
 - If one is a customer, prefer the route through it. If not, prefer the peer route.

 Scoping Constraints
 - Export customer routes to all neighbors and export all routes to customers.
 - Export peer and provider routes to all customers only.

- **Gao-Rexford conditions** => BGP always converges [GR01]