""" =================================================== Faces recognition example using eigenfaces and SVMs =================================================== The dataset used in this example is a preprocessed excerpt of the "Labeled Faces in the Wild", aka LFW_: http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB) .. _LFW: http://vis-www.cs.umass.edu/lfw/ original source: http://scikit-learn.org/stable/auto_examples/applications/face_recognition.html """ print __doc__ from time import time import logging import pylab as pl import numpy as np from sklearn.cross_validation import train_test_split from sklearn.datasets import fetch_lfw_people from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.decomposition import RandomizedPCA from sklearn.svm import SVC # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') ############################################################################### # Download the data, if not already on disk and load it as numpy arrays lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape np.random.seed(42) # for machine learning we use the data directly (as relative pixel # position info is ignored by this model) X = lfw_people.data n_features = X.shape[1] # the label to predict is the id of the person y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0] print "Total dataset size:" print "n_samples: %d" % n_samples print "n_features: %d" % n_features print "n_classes: %d" % n_classes ############################################################################### # Split into a training and testing set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) ############################################################################### # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled # dataset): unsupervised feature extraction / dimensionality reduction n_components = 150 print "Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[0]) t0 = time() pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train) print "done in %0.3fs" % (time() - t0) eigenfaces = pca.components_.reshape((n_components, h, w)) print "Projecting the input data on the eigenfaces orthonormal basis" t0 = time() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print "done in %0.3fs" % (time() - t0) ############################################################################### # Train a SVM classification model print "Fitting the classifier to the training set" t0 = time() param_grid = { 'C': [1e3, 5e3, 1e4, 5e4, 1e5], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], } # for sklearn version 0.16 or prior, the class_weight parameter value is 'auto' clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid) clf = clf.fit(X_train_pca, y_train) print "done in %0.3fs" % (time() - t0) print "Best estimator found by grid search:" print clf.best_estimator_ ############################################################################### # Quantitative evaluation of the model quality on the test set print "Predicting the people names on the testing set" t0 = time() y_pred = clf.predict(X_test_pca) print "done in %0.3fs" % (time() - t0) print classification_report(y_test, y_pred, target_names=target_names) print confusion_matrix(y_test, y_pred, labels=range(n_classes)) ############################################################################### # Qualitative evaluation of the predictions using matplotlib def plot_gallery(images, titles, h, w, n_row=3, n_col=4): """Helper function to plot a gallery of portraits""" pl.figure(figsize=(1.8 * n_col, 2.4 * n_row)) pl.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35) for i in range(n_row * n_col): pl.subplot(n_row, n_col, i + 1) pl.imshow(images[i].reshape((h, w)), cmap=pl.cm.gray) pl.title(titles[i], size=12) pl.xticks(()) pl.yticks(()) # plot the result of the prediction on a portion of the test set def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1] true_name = target_names[y_test[i]].rsplit(' ', 1)[-1] return 'predicted: %s\ntrue: %s' % (pred_name, true_name) prediction_titles = [title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0])] plot_gallery(X_test, prediction_titles, h, w) pl.savefig("eigenfaces.pdf") # plot the gallery of the most significative eigenfaces eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])] plot_gallery(eigenfaces, eigenface_titles, h, w) pl.savefig("eigenfaces2.pdf") pl.show()