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While there is still considerable controversy 
over the root causes of the Financial Crisis of 
2007–2009, there is little dispute that regulators, 
policymakers, and the financial industry did not 
have ready access to information with which 
early warning signals could have been gener-
ated. For example, prior to the Dodd-Frank Act 
of 2010, even systemically important financial 
institutions such as AIG and Lehman Brothers 
were not obligated to report their amount of 
financial leverage, asset illiquidity, counterparty 
risk exposures, market share, and other critical 
risk data to any regulatory agency. If aggregated 
over the entire financial industry, such data 
could have played a critical role in providing 
regulators and investors with advance notice of 
AIG’s unusually concentrated position in credit 
default swaps, as well as the exposure of money 
market funds to Lehman bonds. Of course, such 
information is currently considered proprietary 
and highly confidential, and releasing it into the 
public domain would clearly disadvantage cer-
tain companies and benefit their competitors. 
But without this information, regulators and 
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investors cannot react in a timely and measured 
fashion to growing threats to financial stability, 
thereby assuring their realization.

At the heart of this vexing challenge is pri-
vacy. Unlike other industries in which intel-
lectual property is protected by patents, the 
financial industry consists primarily of “business 
processes” that the US Patent Office has deemed 
unpatentable, at least until recently. Therefore, 
trade secrecy has become the preferred method 
by which financial institutions protect the vast 
majority of their intellectual property, hence 
their need to limit disclosure of their business 
processes, methods, and data. Forcing a finan-
cial institution to publicly disclose its proprie-
tary information—and without the quid pro quo 
of 17-year exclusivity that a patent affords—will 
obviously discourage innovation, which benefits 
no one. Accordingly, government policy has 
tread carefully on the financial industry’s disclo-
sure requirements.

In this paper, we propose a new approach to 
financial systemic risk management and moni-
toring via cryptographic computational meth-
ods in which the two seemingly irreconcilable 
objectives of protecting trade secrets and provid-
ing the public with systemic risk transparency 
can be achieved simultaneously. To accomplish 
these goals, we develop protocols for securely 
computing aggregate risk measures. The pro-
tocols are constructed using secure multiparty 
computation tools (Yao 1982; Goldreich, Micali, 
and Wigderson 1987; Ben-Or, Goldwasser, 
and Wigderson 1988; Chaum, Crépeau, and 
Damgard 1988; Beaver, Micali, and Rogaway 
1990; Cramer et al. 1999), specifically using 
secret sharing (Shamir 1979). It is well known 
that general Boolean functions can be securely 
computed using “circuit evaluation protocols” 
(Goldreich, Micali, and Wigderson 1987; 
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Ben-Or, Goldwasser, and Wigderson 1988), and 
because computing any function on real-valued 
data is approximated arbitrarily well by comput-
ing a function on quantized (or binary) data, in 
principle such protocols can also be used for 
real-valued functions. For arbitrary functions 
and high precision, however, the resulting proto-
cols may be computationally too demanding and 
therefore impractical.

We show that for computing aggregate risk 
measures based on standard sample moments 
such as means, variances, and covariances—the 
typical building blocks of financial risk measures 
(see for example, Bisias et al. 2012)—simple 
and efficient protocols can be developed. Using 
these methods, it is possible to compute the 
aggregate risk exposures of a group of financial 
institutions—for example, a concentration (or 
“Herfindahl”) index of the credit default swaps 
market, the aggregate leverage of the hedge fund 
industry, or the margin-to-equity ratio of all 
futures brokers—without jeopardizing the pri-
vacy of any individual institution. More impor-
tantly, these protocols will enable regulators and 
the public to accurately measure and monitor the 
amount of risk in the financial system while pre-
serving the intellectual property and privacy of 
individual financial institutions.

Privacy-preserving risk measures may also 
facilitate the ability of the financial industry 
to regulate itself more effectively. Despite the 
long history of “self-regulatory organizations” 
(SROs) in financial services, the efficacy of 
self-regulation has been sorely tested by the 
recent financial crisis. SROs may, however, be 
considerably more effective if they had access 
to timely and accurate information about sys-
temic risk that did not place any single stake-
holder at a competitive disadvantage. The broad 
dissemination of privacy-preserving systemic 
risk measures will enable the public to respond 
appropriately as well, reducing general risk-tak-
ing activity as the threat of losses looms larger 
due to increasing systemic exposures. Truly sus-
tainable financial stability is more likely to be 
achieved by such self-correcting feedback loops 
than by any set of regulatory measures.

I.  Secure Protocols

Several important statistical measures such as 
mean, standard deviation, concentration ratios, 
and pairwise correlations can be obtained by 

taking summations and inner products on the 
data. Therefore, we present secure protocols 
for these two specific functions. In particular, 
we assume that the parties follow the protocol 
requirements (although they may be curious1 
and try to learn additional information through 
the protocol) and show that the specified proto-
cols afford real precision while being efficient 
with respect to computations and communi-
cation rounds. It would also be interesting to 
investigate secure protocols for more general 
systemic risk measures or adversarial models, 
and some extensions are briefly discussed in this 
paper but left for future research.

We start with a basic protocol to securely 
compute the sum of m secret numbers when the 
parties are honest but curious (i.e., they do not 
deviate from the protocol although they may col-
lect the data exchanged in the protocol and try 
to learn more information about other parties’ 
data). We assume that each number belongs to 
a known range, which we pick to be [0, 1) for 
simplicity. Recall that the operation a modulo 
m (written a  mod  m) produces the unique num-
ber a + km ∈ [0, m) where k is an integer; e.g., 
3.6  mod 2 = 1.6.

A. Secure-Sum Protocol

For i = 1, … , m, each party i privately 
owns the number ​x​i​ ∈ [0, 1) as an input. 
The protocol outputs a number S to each 
party, which is equal to the real sum 
s = ​∑ i=1​ 

m
  ​ ​x​i​​, if parties follow the protocol 

correctly. 

Secure-Sum Protocol:

	 (i)	 For each i, j with i ≠ j, party i provides 
privately to party j a number ​R​ij​ drawn 
uniformly at random in [0, m).

	 (ii)	 For each i, party i adds to its secret num-
ber the numbers it has received from 
other parties and subtracts the num-
bers it has provided to other parties. 
Formally, party i computes ​S​i​ = ​x​i​ +

		​  ∑ ​
​
j∈{1, … , m}   

j≠i
 

​
​​    ​ R​ji − ​∑ ​

​
j∈{1, … , m}   

j≠i
 

​
​​ 

 
  ​ ​R​ij ​​mod m.

1 Formally, we assume “honest but curious” parties 
(Goldreich 1998). 
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		  Party i reveals Si to the other parties.

	 (iii)	 Each party computes S = 
​∑ i=1​ 

m
  ​ ​S​i​​  mod m.

If the parties follow the protocol correctly, it 
is easy to check that S = ​∑ i=1​ 

m
  ​ ​x​i​​ (i.e., the cor-

rect sum is always obtained), since each element ​
R​ij​ is added and subtracted once in S. In addi-
tion, we show that this protocol reveals nothing 
else about the secret numbers than their sum, 
even if the parties attempt to infer more from 
the exchanged data. For example, Party 1 may 
try to learn more about other parties’ secret 
numbers by using the information gathered in 
​S​1​, ​S​2​, ​S​3​. We provide a privacy guarantee in 
the following theorem, which is based on basic 
probability results (see Abbe, Khandani, and Lo 
2011 for a proof, as well as a simple demonstra-
tion of this protocol).

Theorem 1: Let ​x​1​, … , ​x​m​ be m privately 
owned real numbers in [0, 1). Let i ∈ {1, … , m} 
and Vie​w​i​ denote the view of party i obtained 
from the Secure-Sum Protocol with inputs 
​x​1​, … , ​x​m ​, assuming honest but curious parties. 
The protocol outputs the sum s = ​∑ i=1​ 

m
  ​ ​x​i​​ and 

the distribution of Vie​w​i​ depends on ​x​1​, … , ​x​m​ 
only through s and ​x​i​.

Theorem 1 ensures that the Secure-Sum 
Protocol outputs the sum of m privately owned 
real numbers and does not reveal any additional 
information about the individual numbers if par-
ties do not deviate from the protocol. Extensions 
to malicious parties can also be considered but 
are not discussed here. In particular, the protocol 
is robust to collusion. Other variants of this pro-
tocol include exchanging fewer random num-
bers to minimize the communication between 
parties while preserving the privacy (but this 
may reduce the robustness to collusion), and 
exchanging additional numbers to check the cor-
rectness of the parties’ computations. One may 
also use a “regulator party” who does not pos-
sess any inputs or learn additional information 
about other parties’ inputs, but may improve the 
privacy or efficacy of the protocol.

B. Secure-Inner-Product Protocol

To compute securely the inner product of 
two real vectors, slightly more sophisticated 

protocols are developed and presented in Abbe, 
Khandani, and Lo (2011), using secret shar-
ing (Shamir 1979; Ben-Or, Goldwasser, and 
Wigderson 1988; Chaum, Crépeau, and Damgard 
1988) and Oblivious Transfer (Rabin 1981; Even, 
Goldreich, and Lempel 1985; Goldreich, Micali, 
and Wigderson 1987). The variants include 
information-theoretic and cryptographic proto-
cols on quantized or real data, and have differ-
ent attributes discussed in Abbe, Khandani, and 
Lo (2011). We present here the first protocol on 
quantized data, which uses a dummy party (help-
ing with computations but not possessing inputs 
or receiving meaningful information).

Secure-Inner-Product Protocol.—Common 
inputs are q ∈ ​ℤ​+​ (the quantization level), 
n ∈ ​ℤ​+​ (the vector dimensions), and p a prime 
larger than ​q​2​ n. Party 1 inputs: ​x​1​, … , , ​x​n​ ∈ ​ℤ​q​. 
Party 2 inputs: ​y​1​, … , , ​y​n​ ∈ ​ℤ​q​. Party 3 inputs: 
none. The protocol outputs a number R to par-
ties 1 and 2, which is equal to the inner product  
ρ = ​∑ i=1​ 

n
  ​ ​x​i​​ ​y​i​ if the parties follow the protocol 

correctly.

	 (i)	 For i = 1, … , n, party 1 splits ​x​i​ in three 
shares ​x​i​(1), ​x​i​(2) and ​x​i​(3) uniformly 
drawn in ∑3(​x​i​, ​픽​p​) := {(a, b, c) ∈ 
​픽​ p​ 

3​ : a + b + c mod p = ​x​i​} and party 2 
splits ​y​i​ in three shares ​y​i​(1), ​y​i​(2), and 
​y​i​(3) uniformly drawn in ​∑​3​(​y​i​, ​픽​p​). 
Party 1 provides privately to party 2 the 
shares ​x​i​(1), ​x​i​(2), and privately to party 
3 the share ​x​i​(3). Party 2 provides pri-
vately to party 1 the shares ​y​i​(1), ​y​i​(2) 
and privately to party 3 the share ​y​i​(3).

	 (ii)	 Party 1 sets ​p​i​(1) = (​x​i​(1) + ​x​i​(3))(​y​i​
(1) + ​y​i​(2))  mod  p and ρ(1) = ​∑ i=1​ 

n
  ​ ​p​i​​

(1)  mod  p, party 2 sets ​p​i​(2) = (​x​i​(1) + ​
x​i​(2))​y​i​(3) + ​x​i​(2)(​y​i​(1) + ​y​i​(2))  mod  p 
and ρ(2) = ​∑ i=1​ 

n
  ​ ​p​i​​(2)  mod  p, and 

party 3 sets ​p​i​(3) = ​x​i​(3)​y​i​(3)  mod  p 
and ρ(3) = ​∑ i=1​ 

n
  ​ ​p​i​​(3)  mod  p. For 

m = 1, 2, 3, party m splits ρ(m) in three 
shares ρ(m, 1), ρ(m, 2), and ρ(m, 3) 
uniformly drawn in ∑3(ρ(m), ​픽​p​) and 
reveals privately ρ(m, k) to party k, for 
k = 1, 2, 3.

	 (iii)	 For k = 1, 2, 3, party k computes R(k) 
= ​∑ m=1​ 

3
  ​ ρ​(m, k)  mod  p. Parties 1 and 

2 privately exchange R(1) and R(2) 
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and party 3 provides R(3) to par-
ties 1 and 2. Parties 1 and 2 compute 
R = R(1) + R(2) + R(3).

Theorem 2: Let x = [​x​1​, … , ​x​n​] and y  
= [​y​1​, … , ​y​n​] be two privately owned vectors on ​
ℤ​ q​ n​. Let Vie​w​1​ denote the view of party 1 obtained 
from the Secure-Inner-Product Protocol with 
inputs x, y, assuming honest but curious par-
ties. The protocol outputs the inner product  
ρ = ​∑ i=1​ 

n
  ​ ​x​i​​ ​y​i​ and the distribution of Vie​w​1​ 

depends on x, y only through ρ and x. The recip-
rocal result holds for party 2. The distribution of 
the view of party 3 does not depend on x, y.

This theorem ensures that the Secure-Inner-
Product Protocol outputs the sum of two privately 
owned quantized vectors and does not reveal any 
additional information about the individual vec-
tors if the parties do not deviate from the proto-
col. Abbe, Khandani, and Lo (2011) provide a 
simple numerical example of this algorithm, as 
well as a more detailed illustrative application 
using publicly available quarterly data from June 
1986 to December 2010 (released in arrears by 
the US Federal Reserve) on the total amount of 
outstanding real estate–related loans issued by 
three major bank holding companies: Bank of 
America, JPMorgan, and Wells Fargo. Figure 1 
displays the three time series of encrypted data 
(step 2 of the Secure-Sum Protocol above) 
revealed by each of the three institutions to each 
other. As is evident from visual inspection, the 
three encrypted series are random. They have a 
different scale than the original series and show 
no trend even though no clear trends exist in 
the unencrypted data.2 Yet the sum of the three 
encrypted time series is identical to the sum of 
the unencrypted time series, which may be a 
useful aggregate measure of “crowdedness” and 
potential illiquidity in this market.

II.  Discussion

By construction, privacy-preserving measures 
of financial risk exposures cannot be “reverse-
engineered” to yield information about the 

2 The scale of the encrypted data is controlled by the sup-
port of the distribution used for ​R​ij​ (parameter m in Step 1 
of the Secure-sum protocol). For this example, we rounded 
the holding of each bank to the nearest billion dollars and 
set m = 10,000.

individual constituents. Accordingly, there is no 
guarantee that the individual inputs are truthful. 
In this respect, the potential for misreporting 
and fraud are no different for these measures 
than they are for current reporting obligations 
by financial institutions to their regulators, and 
existing mechanisms for ensuring compliance—
random periodic examinations and severe 
criminal and civil penalties for misleading 
disclosures—must be applied here as well. Of 
course, the algorithms proposed in this paper 
can be easily modified to produce a crypto-
graphically secure audit trail that would enable 
the regulators to verify the historical truthfulness 
of the participants that are selected for random 
periodic audits.3

Unlike traditional regulatory disclosures, 
however, privacy-preserving measures will pro-
vide users with a strong incentive to be truthful 
because the mathematical guarantee of privacy 
eliminates the primary motivation for obfusca-
tion. Since each institution’s proprietary infor-
mation remains private even after disclosure, 
dishonesty yields no discernible benefits but 
could have tremendous reputational costs, and 
this asymmetric payoff provides significantly 
greater economic incentive for compliance. 
Moreover, accurate and timely measures of sys-
tem-wide risk exposures can benefit the entire 
industry in allowing institutions and investors 
to engage in self-correcting behavior that can 
reduce the likelihood of systemic shocks. For 
example, if all stakeholders were able to monitor 
the aggregate amount of leverage in the financial 
system at all times, there is a greater chance that 
market participants would become more wary 
and less aggressive as they observe leverage ris-
ing beyond prudent levels.

A related issue is whether participation in 
privacy-preserving disclosures of financial risk 
exposures is voluntary or mandated by regula-
tion. Given the extremely low cost/benefit ratio 
of such disclosures, there is reason to believe 
that the financial industry may well adopt such 
disclosures voluntarily. A case in point is Markit, 

3 In ongoing research, we take a more radical application 
of secure multiparty computation that is to include the regu-
lator as one of the parties. This one simple change not only 
eliminates the need for a trusted party, but also shifts the role 
of human supervision from monitoring data to monitoring 
protocols, dramatically leveraging the scarcest resource of 
regulatory agencies. 
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a successful industry consortium of dealers of 
credit default swaps (CDS) that emerged in 2001 
to pool confidential pricing data on individual 
CDS transactions and make the anonymized 
data available to each other and the public so 
as to promote transparency and liquidity in this 
market. According to Markit’s website, the data 
of its consortium members are “… provided on 
equal terms to whoever wanted to use it, with 
the same data released to all customers at the 
same time, giving both the sell-side and buy-
side access to exactly the same daily valuation 
and risk management information.”4 From this 
carefully crafted statement, it is clear that equi-
table and easy access to data is of paramount 
importance in structuring this popular data-shar-
ing consortium. Privacy-preserving methods of 
sharing information could greatly enhance the 
efficacy and popularity of such cooperatives.

The same motivation applies to the sharing of 
aggregate financial risk exposures, but with even 
greater stakes as the recent financial crisis has 
demonstrated. Once a privacy-preserving sys-
tem-risk-exposures consortium is established, 
the benefits will so clearly dominate the nomi-
nal costs of participation that it should gain 
widespread acceptance and adoption in short 
order. Indeed, participation in such a consortium 
may serve as a visible commitment to industry 
best practices that yields tangible benefits for 

4 http://www.markit.com/en/media-centre/about-markit-
cds-pricing.page (acccessed February 29, 2012).

business development, leading to a “virtuous 
cycle” of privacy-preserving risk disclosure 
throughout the financial industry.

III.  Conclusion

Privacy-preserving measures of financial risk 
exposures solve the challenge of measuring 
aggregate risk among multiple financial insti-
tutions without encroaching on the privacy of 
any individual institution. Current approaches 
to addressing this challenge require trusted third 
parties, i.e., regulators, to collect, archive, and 
properly assess systemic risk. Apart from the 
burden this places on government oversight, 
such an approach is also highly inefficient, 
requiring properly targeted and perfectly timed 
regulatory intervention among an increasingly 
complex and dynamic financial system. Privacy-
preserving measures can promote more efficient 
“crowdsourced” responses to emerging threats 
to systemic stability, enabling both regulators 
and market participants to accurately monitor 
systemic risks in a timely and coordinated fash-
ion, creating a more responsive negative-feed-
back loop for stabilizing the financial system. 
This feature may be especially valuable for pro-
moting international coordination among mul-
tiple regulatory jurisdictions. While a certain 
degree of regulatory competition is unavoidable 
given the competitive nature of sovereign gov-
ernments, privacy-preserving measures do elim-
inate a significant political obstacle to regulatory 
collaboration across national boundaries.

Privacy-preserving risk measures have several 
other financial and nonfinancial applications. 
Investors such as endowments, foundations, pen-
sion and sovereign wealth funds can use these 
measures to ensure that their investments in var-
ious proprietary vehicles—hedge funds, private 
equity, and other private partnerships—are suf-
ficiently diversified and not overly concentrated 
in a small number of risk factors. For example, 
the Secure-Inner-Product Protocol can be used 
to calculate correlations without requiring these 
private partnerships to share their actual returns 
with each other or even with the pension fund 
investor. Financial auditors charged with the 
task of valuing illiquid assets at a given financial 
institution can use these measures to compare 
and contrast their valuations with the industry 
average and the dispersion of valuations across 
multiple institutions. Real-time indexes of the 

Figure 1. Historical Quarterly Time Series of Three 
Privacy-Preserving Measures of Total Real Estate 
Loans Outstanding of Bank of America, JPMorgan, 
and Wells Fargo from June 1986 to December 2010 

(  for which the sum is identical to the sum 
of the unencrypted time series)
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aggregate amount of hedging activity in sys-
temically important markets like the S&P 500 
futures contract may be constructed, which 
could have served as an early warning signal for 
the “Flash Crash” of May 6, 2010.

More broadly, privacy-preserving measures 
of risk exposures may be useful in other indus-
tries in which aggregate risks are created by 
individual institutions and where maintaining 
privacy in computing such risks is important for 
promoting transparency and innovation, such as 
healthcare, epidemiology, and agribusiness.
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