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Motivation







What is the right content?



Who are the right people?



When is the right time?



1. Big Data 
2. Machine Learning 
3. … 
4. Profit



Optimize for likes



Optimize for shares



Optimize for comments



Optimize for ?? 

likes + 10*comments + 5*shares?



• Long term objectives are hard 

• We could optimize for content that keeps people engaged 30 days later, in 
practice this is really difficult to do.  

• Weight tuning 

• Users are different and ranking should reflect that. Our ranking should 
understand heterogeneity.  

• Not only do we need to worry about a misspecified objective function, each 
user might be operating under a different objective function.  

Ranking







• Not a problem with Machine Learning - we’re just measuring the wrong 
things.  

• Ask users what the right content is then use that to inform our algorithms.  

• Easier said than done.  

Measurement







1. Big Data 
2. Machine Learning 
3. Small Data 
4. Profit



Learning Preferences



Behavioral economics to the rescue

• Economists have long studied how to estimate and model user preferences. 

• Goes back to Bernoulli, Bentham trying to understand declining marginal value.  

• Given a choice set, X, preferences are “well defined” if a preference ranking exists 

over those choices (e.g. no cycles, no incomparables). 



Psychophysics

Easy!&

Hard!&

Easy

Hard
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• Assume everyone has the same underlying utility function: 

• e.g., 5 x P(like)  +  20 x P(comment) + 40 x P(share) + … 

• Each story i is perceived with noise: 

• User picks the story with higher utility 

• Estimate the weights using logistic regression 

Random Utility Model



Random Utility Model

• Estimated weights are dimensionless (up to affine transformations) 

• Coefficient ratios have well defined meaning (marginal rates of substitution) 

• For ranking, we only care about the relative weights



• Absolute Scale: a “5” beats all “4”s:  

• For n comparisons you can build (n^2 - n)/2 pairwise comparisons.  

• Requires users to apply same scale across all comparisons.  

• Sensitive to framing: 

• Question and labels matter! 

• Need lots of guidance to give consistent answers.  

Likert scale



• Relative Scale: 

• Can’t determine strength of preference.  

• More deeply linked with choice task.  

• Task can be difficult: 

• A “skip” option is often used.  

• Possibly intransitive: 

• A > B > C > A  

Pairwise Comparisons





Random Utility
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Scale vs. Pairwise 

(this section not presented during 
class)



• Likert scale is more efficient in eliciting user preferences under ideal conditions, 
however in most realistic conditions pairwise comparisons are preferred because 
of: 

• differential item functionality (i.e., the fact that different scale points may 
mean different things to different people) or  

• low quality inputs (e.g., lack of attention or understanding by survey 
participants or noisily measured input features) 

• In practice: PC has been more effective for our objectives - task is easier and data 
is cleaner. 

Findings:



• Generate n users, f features, and degree of heterogeneity in preferences 
(designated b).  

• For each user, simulate 10 survey choices from a likert scale task and a PC task.  

• We then determine how well we can uncover user preferences: 

• How much error is there in estimated marginal rates of substitution? 

• How well does our model recover the true ranking function? (transposition 
score) 

• We then introduce DIF, rater noise and measure how well each holds up. 

Approach:





Likert more efficient
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