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ABSTRACT 
One of the largest challenges for a recommender system is 
building a ranking of “quality” or “relevance” in 
situations where these features cannot be observed directly. 
These models are often trained on various types of survey 
data, including Likert-scale quality ratings or pairwise 
comparison surveys, but there has been little work detailing 
the efficiency of these techniques for eliciting quality 
ranking and a parsity of work on how to analyze and 
interpret pairwise choice data. We present techniques for 
using pairwise choice data for quality ranking and we find, 
under simulation, that Likert scale elicitation is more 
efficient under the best possible conditions but in the 
presence of differential item functionality (i.e., the fact that 
different scale points may mean different things to different 
people) or low quality inputs (e.g., lack of attention or 
understanding by survey participants or noisily measured 
input features) pairwise comparison becomes a more 
efficient survey method. We confirm this finding by using 
different survey techniques to infer the relevance of 
individuals’ Facebook News Feed stories. Pairwise choice 
elicitation can be finished quickly by survey participants, is 
easily to implement and scale, produces models with 
interpretable results and is robust to noise and 
interpretational issues. Thus, we argue, pairwise choice 
surveys have wide potential for application. 
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1. INTRODUCTION 
The Internet is full of content, mostly videos and 
pictures of cats [19]. However, not every piece of 
content (and certainly not every cat video) is created 
equal and thus algorithmic sorting by relevance is an 
important part of many websites’ business models.  
Often, explicit user reviews make the sorting process 
easier (e.g., in the case of Netflix or Amazon 

streaming video) and much research has gone into 
recommender systems based on collaborative filtering 
or other approaches [17, 18]. However, in many other 
important cases eliciting individual ratings of each 
piece of content is either costly or downright 
impossible (imagine asking all Facebook or Twitter 
users to evaluate every story/tweet they see or 
redditors to rate every meme in the known universe 
Our proposed method is as follows: a content 
platform (e.g. Facebook News Feed) samples a 
representative subset of individuals and presents them 
with pairs of randomly chosen content. For each pair 
individuals choose the more relevant of the two. 
We show how to apply discrete choice random utility 
models to take the resulting survey data to estimate a 
ranking function. These models have a rich history in 
behavioral economics, psychology and game theory 
[12, 13]. They have been used to model phenomena 
from psychophysics (perception of sound/brightness 
etc…) [20], to estimating individual preferences for 
risk [22], to models of human learning [23] to larger 
models of markets where random utility functions are 
aggregated to build consumer demand [10]. As we 
will see, they are a natural fit for the problem of 
building ranking. 
Our main results concern the robustness properties of 
this model to real world confounds such as 
inattention/lack of understanding by survey 
participants, noise in the measured features and 
heterogeneity in preferences. We also compare the 
pairwise choice elicitation mechanism to another 
commonly used elicitation mechanism: having 
individuals rate the quality or relevance of items one 
at a time using Likert scales. 
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Another solution to the relevance sorting problem 
comes in the form of voting schemes popularized by 
websites like reddit. These techniques employ the 
power of the crowd to find relevant content, however 
they have two disadvantages. First, they do not 
leverage the information that websites often have 
about a piece of content (attributes such as topics, 
features of the content author, similarity to other high-
quality content, etc…). Second they are vulnerable to 
“herding” behavior where content can become highly 
ranked due to path-dependence (e.g., an early upvote) 
rather than actual quality [14, 15]. The pairwise 
choice method avoids these concerns. 
 

2. METHODOLOGY 
We now describe how we go from sets of pairwise 
choices to quality rankings. Our workhorse model is a 
simple utility model. Individuals are presented with 
two pieces of content. We index content by i and 
assume that each piece of content has an associated 
feature vector representation fi. For the purposes of 
the pairwise choice problem, let’s call the items cleft 
and cright.  
Each individual, who we index by j, has a function Uj 
(ci) that map features of each item to its relevance or 
quality. We call these the users’ true utility functions. 
When asked to indicate which of two items is higher 
quality individuals estimate this quality level but with 
some error.  
This error around the true utility is used as a modeling 
assumption for many important psychological 
abstractions: human perception is itself noisy [20] and 
momentary emotional/physiological states can affect 
judgments [21]. In addition, this noise also serves as a 
modeling proxy for features that are not explicitly 
modeled/measured by the platform or analyst. 
We refer to this noisy estimation as the individual’s 
perceived utility Vj(ci). For the purposes of the 

simulations we assume the noise is normally 
distributed with mean 0 and variance se. 

Vj(ci) = Uj(ci) + e 
Further, we assume that the functions are linear in 
feature vectors so we get:1 

Uj (ci) = fi*Bj 
Finally, we assume that that the individual level utility 
weights Bj are drawn from a multivariate normal 
population distribution with a grand mean BM and 
covariance matrix SB. 
The process of choice then goes as follows: 
individuals are presented with items cleft and cright 
(with feature vectors known to the analyst) and they 
estimate Vj(cleft) and Vj(cright). They then make the 
choice that reflects their highest perceived utility. 
Figure 1 summarizes the process. 
From a sample of individual choices our task is to 
recover and evaluate a population ranking function 
(here, a vector of weights R). In other words, we seek 
to estimate the grand mean BM.2   
Note that due to the assumptions we have made the 
probability of choosing an item i as being more 
relevant than an item k is proportional to the true 
utility difference of the two items. For this reason to 
estimate R we simply run a logistic regression with y 

                                                                    
1 Note that this assumption is not so restrictive. We could always 
take a basis expansion of the original set of features to 
approximate any non-linear function. Alternatively, we can think 
of our task as finding the linear function that best approximates 
the users’ utility functions. We also note that the distribution 
assumptions on B and e are not restrictive and in fact the logistic 
random utility model we use is, in fact, mis-specified given our 
simulated data. 
2 An interesting and important extension of this methodology is to 
use it to build not just a ranking function that works on average, 
but to build individual-level ranking models. The focus of this 
paper is not to discuss this, rather it is to show the robustness and 
power of the pairwise choice methodology in the simplest case. 

 
Figure 1: Individuals are shown 2 pieces of content and are asked to choose the higher quality one. Our assumptions are that each 

piece of content has an underlying intrinsic quality that individuals perceive with noise and choices reflect this noisy utility. We then 
use a logistic random utility model to recover true underlying mappings from features to quality. 

V(content1) = 3 V(content2) = 1.5 



= “did the user choose the item on the left?” as our 
binary outcome and the difference in features as our 
independent variable. Formally the model is: 

yik = logit((fi –fk)R) 
We use the recovered R as our ranking function. 
The rest of this paper investigates two questions using 
simulations and real data: 

1) How well does this procedure work?  
2) How does pairwise choice compare to Likert-

scale rating, another standard method of 
survey evaluation? 

3. COMPARISONS TO LIKERT SCALES 
One could also ask the user to rate the quality of the 
item on a continuous scale. In many cases the 
continuous version is quite difficult as quality or 
relevance may have no natural scale. Therefore, most 
surveys ask individuals to rate each piece of content 
on a Likert scale (e.g. from “1-Very Poor” to “5-
Excellent”). 
On the surface these methods appear to be far more 
powerful than pairwise comparison. Out of n 
continuous valued answers we could build (n2 – n) / 2 
pairwise comparisons. In addition, because quality 
levels are now directly elicited rather than come out 
of a model, it is somewhat more straightforward to 
interpret the data. However, the next set of 
simulations will show that under ideal conditions the 
comparison advantage is modest at best and additional 
complications arising from the analysis of Likert scale 
data make pairwise comparisons more robust and 
simpler to use. 
We employ simulation methods to investigate the 
relative power of each approach. Simulation methods 

have the advantage that they allow us to vary 
parameters explicitly as well as giving us a ground-
truth to compare against.  
Our simulations include P individual taking both 
pairwise comparison surveys and Likert scale surveys. 
Each person is presented with 10 questions. We 
generate each item as a feature vector with f 
dimensions (which we will vary) and we draw a 
utility function as described in the methodology 
section setting BM to be a vector of 1’s and the 
covariance matrix to have all feature weights be 
independent draws with identical variance sB (which 
we will vary).  
To generate Likert scale responses we assume that 
individuals have cutoffs (l1, l2, l3, l4) such that 
individuals give the item a 1 if its perceived relevance 
falls between –Infinity and l1, a 2 if it falls in the 
interval [l1, l2] and so on (see Figure 2 for visual 
demonstration).  
Note that this assumes that every individual uses the 
same cutoff rating. This gives us a simple latent 
variable model that can be estimated using an ordered 
Probit regression [9].  
We simulate P individuals each making 10 survey 
decisions and ask how well each method performs as 
a function of the model parameters. In particular we 
focus on two error metrics: first, we ask how well 
does the model recover the true mean utility vector in 
the population? That is, how close is the ranking 
function that we would recover (and presumably later 
use) to the true ranking function in the population? 
Note that our question is subtler than it appears. Due 
to noise in our data we always expect to have 

 
Figure 2: We model Likert scale responses as thresholds which define what quality values are, for a given individual, associated 

with a scale response. In the base model (left panel) all individuals use the same cutoffs which are in terms of standard deviations of 
the underlying uility function. To model DIF (right panel) we allow ‘selectiveness’ (which we model by the span of the blue lines), 

inner thresholds (black lines), and positivity/negativity bias (offset of all lines from central black line) to vary.  
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attenuation problems driving our regression 
coefficients towards 0 (that is, if we assume that both 
features and rankings are measured with error than 
any correlations that we infer between the measured 
values will be weaker than true population level 
correlations).  
But, also note that we are not interested in recovering 
an absolute value but rather a ranking. This means we 
are interested not in how accurate the absolute 
coefficients are but rather in the ratios of weights 
(often called the marginal rates of substitution). In 
other words, we don’t care about the absolute 
“weight” of a feature but rather how much one feature 
is worth relative to others in terms of adding quality. 
As a quick example, suppose that the true mean 
weights are (1,1), then a model that recovers the 
weights (.5, .5) will have the wrong coefficients but 
will still rank all items correctly. 
For our first metric then, we will consider how well 
each procedure allows us to recover the marginal rates 
of substitution, or, more formally we will use the 
distance metric given by 

∑k != 1 ((Rk/R1)– 1)2 
Second, since we are interested in models that rank 
content we ask: if we were to randomly draw two 
pieces of content, how often would the recovered 
model correctly rank them relative to the ideal ranking 
given by using the true mean utility vector?3 

                                                                    
3 We note that there are more complex ways of evaluating a 

ranking (e.g. metrics like NDCG [6] or Kendall’s Tau [5]). 
Using these other evaluations would change the absolute 
numbers but not the flavor of our results. For the purposes of 

For our simulations we vary:  
1) the number of individuals recruited P: (n 

people) 
2) the number of features whose weights need to 

be estimated: (f) 
3) heterogeneity in preferences (i.e., the variance 

sB): (b) 
We fix the noise level (variance of e) to be equal to 
the sum of the variance of the features. In essence, we 
assume that a full 50% of the signal contained in the 
perceived value of each item is noise. 
We run our simulations 100 times for each parameter 
value and take the median error metric (we take the 
median because the large variance cases sometimes 
cause large deviations in coefficient estimates, in 
practice we recommend employing some form of 
regularization in the logistic/probit regressions used to 
estimate MRS). 
Figure 3 shows the results of our simulations. We see 
that as we increase P the ranking model estimated 
from pairwise choices quickly converges to be nearly 
identical to the model that would be estimated from 
our 5-point Likert scale. In addition, both models are 
very close to the performance of an ideal model where 
individuals are able to state their perceived utility for 
each item directly. 
This is true (Fig 3, panel C) even when there is a very 
large feature number of features, very large 
heterogeneity in preferences (sB = 50) and large noise. 
Even 10,000 survey participants is not enough to 
reach accuracy levels of above 90% in the 
                                                                                                                 

this exercise we use the pairwise transposition score because it 
is simpler for exposition. 

 
Figure 3: All methods converge to identifying the optimal grand mean ranking (with high variance it might take thousands of 

raters). Although Likert scale based rating outperform the pairwise comparison method, it does so only modestly and only under 
the ideal conditions of identical thresholds. 
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transposition score. The stark difference between 
panels C and B suggests that a first stage of feature 
compression may be another important step to take 
when building ranking models. 
Although the number of survey participants may look 
large, one should keep in mind that the surveys here 
are only 10 questions long and don’t require 
significant setup and so can be administered by a 
content platform without requiring more than a 
minute or two of a user’s time.  
Of course these results beg the question: why use 
pairwise comparison surveys when a 5-point Likert 
scale is much more efficient at small samples and 
continues to be slightly more efficient with larger 
samples? 
The main issue here, as with other applications of 
continuous scales in surveys, is that scale points 
(especially ones labeled with arbitrary values) can 
mean different things to different people. This is often 
termed differential item functionality (DIF) [3]. In our 
model, this corresponds to adding in the assumption 
that the “breakpoints” individuals use to assign a 
perceived utility level to a Likert scale category are 
heterogeneous across people. 
We model the degree of this heterogeneity as follows: 
we assume that everyone has a baseline breakpoint as 
in the single threshold model and we jitter those 
thresholds. This is illustrated in Figure 2B. First, we 
set the “width” of the cutoff zones for 1 and 5. This 
can be thought of as different individuals having 
different cutoffs for when they rate something as 

“absolutely terrible” or “absolutely amazing.” This is 
represented in Figure 2B by the blue lines. This gives 
us our first parameter width which is 3 standard 
deviations in the single threshold model.  
In addition, we randomize the position of the inner 
thresholds (black lines). Finally, we also model 
individual level bias towards one or another side of 
the scale by offsetting the position of all thresholds by 
a constant (in the single threshold model the offset is 
0, as demonstrated by the black line in Fig. 2B). 
We now consider what happens when we add DIF to 
our simulations. We consider the medium variance 
case, but results are qualitatively identical for low and 
high variance parameter sets. 
Re-running our simulations (Figure 4) allowing for 
heterogeneous thresholds shows that the presence of 
even mild DIF gives the pairwise choice model an 
advantage.  
We do note that techniques exist to attempt to control 
for DIF including using a common anchor [4], 
estimating heterogeneous thresholds [1] and ensuring 
via training or strict instructions (i.e. “rubric grading”) 
that individuals use identical thresholds. When these 
techniques are available, Likert scales may indeed be 
the most useful technique for survey design. 
However, for easy and simple surveys which gather 
power from pooling subject responses to estimate a 
mean parameter we believe that pairwise choice is a 
natural and robust surveying method. 
We now consider another source of trouble for survey 
methods: lack of attention or interest by participants. 
What happens to our results if a substantial portion of 

 
Figure 5: Adding DIF decreases the accuracy of Likert-

elicited ranking functions. 

 
Figure 4: Pairwise choice elicitation is robust to the addition 

of even a large proportion of individuals who don’t follow 
the survey directions and choose randomly.  
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participants are simply not performing the task as 
requested? 
We add this to our simulations by considering that a 
portion of individuals can be “bad survey takers.” We 
assume that a proportion b of individuals, instead of 
choosing to maximize their perceived utility simply 
choose randomly.4 Figure 5 shows the results: the 
addition of even a large proportion of “bad survey 
takers” does not change our results very much.  

4. EMPIRICAL EVALUATION 
So far we have focused on simulation results. We now 
turn to the performance of these measures out in the 
wild. To do so, we look at data from Facebook 
surveys. In the summer and fall of 2014, we asked a 
random sample of Facebook users to rate the quality 
of Facebook News Feed posts.  
There were two separate surveys, in one survey 
individuals were presented with randomly sampled 
stories generated by their friends or pages they were 
connected to and asked: “How much would you like 
to see this story in your News Feed?” which they 
answered using a 1-5 Likert scale. 
In the other survey individuals were presented with 
two stories (also drawn randomly from the set of 
stories created by their friends or pages they were 
linked to) and asked to “[c]hoose the story that is 
most interesting to you.” Both surveys had a small 
introduction section and took comparable lengths of 
time to complete. 
We now want to compare which survey method elicits 
ranking data more efficiently. However, unlike in our 
simulations, we lack any notion of ground truth (if we 
knew which stories were most relevant, we wouldn’t 
need to be doing these surveys).  
Thus, we turn to a proxy metric to evaluate the 
effectiveness of our survey techniques: the variance of 
the estimated MRSs.  
The intuition behind this choice of metric is as 
follows: both methods should, in theory, be consistent 
and thus estimate the same ranking model in the limit 
of infinite data. Thus, the question of “how well will 
this method estimate a ranking model with a sample 
size of N?” can be thought of as asking “how close are 
we to the N=infinity limit?” In other words: how 
                                                                    
4 Note that we could make other assumptions about the form of 

the behavior of bad raters (for example: they could have a bias 
towards the left or the right, rather than choosing randomly). 
Most of these would not change the results as instead of being 
picked up by the error term in the logit model, they would be 
picked up by the intercept.   

much variation do we see in the estimated 
coefficients?  
We estimate this as follows: we take a large sample of 
survey participants and calculate the standard error of 
the MRS for the sample by bootstrapping (using 200 
bootstrap replicates) at the individual level (because 
decisions are correlated at the individual level). We 
then take the average standard error for each N 
participants over 240 runs of the simulation. 
If this procedure sounds confusing, a simple intuition 
for it is that we are simply trying to replicate the 
procedure for the simulations used earlier in the paper 
but this time using real data and a different error 
metric.  
We use a very simplified feature space for this 
exercise. For each story/individual pair we use the 
predicted probability that an individual will Like, 
Comment, Share or Click (when applicable) on this 
content. These probabilities themselves are trained 
from higher dimensional feature spaces including past 
interaction history of individuals with content similar 
to the content they are viewing. For a more detailed 
description of how these models operate see [24]. 
We note that our focus here is not on the input 
features, but rather on the precision with which both 
survey procedures estimate the ranking function 
which uses these features to estimate a ranking. We 
thus turn to these results plotted in Figure 6. 
We see that in the real data sets the pairwise 
comparison-based survey is more efficient (can 
estimate the parameters of the ranking function more 
precisely) as a function of the inputs.  
 

5. CONCLUSION 
We have studied the problem of using ‘small data’ in 

 
Figure 6: In a real experiment the pairwise choice-based 

procedure is able to estimate ranking functions more 
efficiently than the Likert-scale based procedure. 
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the form of surveys in combination with ‘big data’ in 
the form of detailed feature knowledge to build 
models to rank content in terms of quality or 
relevance. 
Our initial simulation and empirical results are 
promising: pairwise choice elicitation is a robust and 
scalable method for learning individual preferences. 
Likert-scale elicitation is likewise useful but when 
conditions are not ideal (e.g. there is DIF in the 
population) pairwise choice outperforms the Likert 
scale. 
These survey methods have much theoretical interest, 
but at the end of the day they are inputs to an 
engineering enterprise and so more work needs to be 
done on evaluating the robustness of these methods in 
the field as well as the quality of the resulting ranking 
mechanisms. 
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