
Context Free Grammars- I

Context Free Grammars : V is the set of variables; T set of terminals,
P is the set of productions, each of the form A → α, where A ∈ V and
α ∈ (V ∪ T )∗ and a start symbol S. [A, B, C, D, S will denote variables;
a, b, c, d, e will denote terminals; α, βγ will denote elements of (V ∪ T )∗.]

Define Derivations. For a CFG, G L(G) denotes the set of strings of
terminals which can be derived from S.

The main use of CFG’s in practice is to specify various things in a pro-
gramming language. In this setting, it is important for us to “parse” a given
string x ∈ T ∗ : to determine whether x is in L(G) and if so find a deriva-
tion. Productions of the form A → B with just one non-terminal on the
right (called unit productions) and productions of the form A → ε with the
0-length string on the right (called ε productions) are problomatic for parsing
- because they are not length-increasing, they uspet the recursive procedure
we usually design as a precursor to a Dyanamic Programming algorithm for
parsing. So, we get rid of non-length-increasing productions at the outset.

Getting rid of ε productions : First determine which non-terminals
can derive ε (Easy) - call all such non-terminals “nullable”. Then for each
production of the form A → X1X2 . . .Xl, in the given grammar G, add the
(at most 2l − 1) productions we get by omitting a set of nullable variables
among X1, X2, . . .Xl, except, we do not add the production A → ε. Prove
that this gives us a grammar G′ such that L(G′) = L(G) \ {ε}.

Getting rid of unit productions For each pair of non-terminals A, B

determine whether A derives B in the given grammar G. (Easy in the ab-
scence of ε productions.) Then we construct a new grammar G′ as follows
: for each pair of non-terminals A, B such that A derives B and for each
non-unit production of the form B → α, we add the production A → α to
G′.

Chomsky Normal Form : Any CFL not containing ε admits a CFG with
all productions of the form A → a or A → BC

1


