Context Free Grammars- II

Recall definitions of CFG, CFL, derivations, derivation trees.

Proof of Chomsky Normal Form : Put in a new variable C_a for each terminal a. If rhs (right hand side) of a production has only one letter, a terminal, leave it alone. If it has more than one letter, then replace each terminal a on the rhs by C_a . Add all productions of the form $C_a \to a$.

Now each production $A \to X_1 X_2 \dots X_l$, (with $l \ge 3$), we introduce **new** variables $D_1, D_2, \dots D_{l-2}$ and replace this production by the set of productions :

$$A \to X_1 D_1 ; D_1 \to X_2 D_2 ; D_2 \to X_3 D_3 ; \dots ; D_{l-3} \to X_{l-2} D_{l-2} ; D_{l-2} \to X_{l-1} X_l.$$

Closure Properties : The set of CFL's is closed under union, concatenation and Kleene star.

Proof (For Union alone) : If G_1, G_2 are two CFG's, a CFG for $L(G_1) \cup L(G_2)$ is defined by first renaming all variables in G_2 to be different from variables of L_1 , then taking all the productions of both grammars plus the two productions $S \to S_1|S_2$, where S_1, S_2 are the start symbols of G_1, G_2 respy.

Claim The set of CFL's is not closed under intersection.

Example It is known that $\{a^i b^i c^i\}$ is not be a CFL.

Parsing Algorithm for CFL's

The input is string x of length n. We first put the CFG in Chomsky Normal Form.

We use Dynamic Programming. We denote by x(i, j) the substring of x starting from its i th letter to its j th letter. We will compute the quantities

$$S_{ij} = \{ A \in V : A \Rightarrow^* x(i,j) \}.$$

To do this, we branch on the first production used in a derivation of x(i, j). This leads to a Dynamic Prog recursion with the observation that A is in S_{ij} iff there is a production of the form $A \to BC$, where for some $k, i \leq k \leq j-1$, $B \in S_{ik}$ and $C \in S_{k+1,j}$, both strictly smaller problems. It was very important for this that we first got rid of ϵ and unit productions. (Think about this point again.)

Emptiness and finiteness problems for CFL's are decidable. But cofiniteness (whether a CFL contains all but a finite number of strings) and equivalence of two CFL's are undecidable. Proof for Emptiness : Assume the CFG is in CNF with set of productions P. For variable A, define f(A) to be the minimum depth of a derivation tree for $A \Rightarrow^* \alpha$ for some terminal string α ; f(A) is thought of as ∞ if there is no such derivation. Let

$$F_i = \{A : f(A) = i\}.$$

We will show how to find all the F_i first. $F_1 = \{A : A \to a \text{ is a production }\}$.

We claim that F_{i+1} is precisely the set of A for which, (i) $A \notin F_1 \cup F_2 \cup \ldots F_{i-1}$ and (ii) there is a production $A \to BC$ such that $B \in F_i$ and $C \in F_1 \cup F_2 \cup \ldots F_i$ or $C \in F_i$ and $B \in F_1 \cup F_2 \cup \ldots F_i$. (Why ?)

Thus F_{i+1} may be found from F_i .

This implies that if for some i, F_i is empty, then F_{i+1}, F_{i+2}, \ldots are all empty. Now it is easy to see that we can construct $F_1 \cup F_2 \cup F_3 \ldots$ and therefore test emptiness.