
DYNAMIC PROGRMAMING

Dynamic Programming is a very important general technique for algo-
rithm design. It is the first technique you should try when confronted with
a problem which does not at first look to be solvable in polynomial time;
in many non-obvious polynomial time algorithms, it is Dynamic Program-
ming which does the trick. [Generally, divide and conquer, the other general
technique we saw enables one to improve the time for a problem which is
already solvable in polynoimial time - for example, sorting, multiplication of
two integers, matrices etc.]

A good starting point for a Dynamic Programming solution is to design
a recursive procedure; then instead of implementing the recursion, one does
it bottom-up - we see all the values of the parameters for which the recursive
procedure would get executed in a recursive program (each possibly many
times); then run the procedure on these values starting with the least values
first (bottom-up). Whenever we are to make a recursive call, we instead
fetch the result of the procedure on those values since this has already been
calculated.

Example 1 : Matrix-Chain product :
Suppose we wish to compute the product A1A2 . . . An of nmatrices A1, A2 . . . An,

where Ai is pi × pi+1. Note that the cost of multiplying a p× q matrix by a
q × r matrix is pqr. [Examples, more discussion in class.] We wish to find
the most efficient way of finding this product.

To first design a recursive procedure for this and all other Dynamic Pro-
gramming problems, there are three points to remember :

Three Points
(1) Suppose we had on hand the optimal solution to the problem (in this

case - the order in which we multiply). What is the last thing (in this case -
the last multiplication) that that solution performs ?

(2) What are all the possibilities for the last thing ?
(3) Each possibility in (2) leads to a “recursive” call. What are all the

sub-problems solved by a recursive procedure ?

If the last multiplication occurs in the position between k and k+ 1, then
the solution has already computed the product A1A2 . . . Ak and the product

1



Ak+1Ak+2 . . . An and the last thing it does is to multiply the two products
at a cost of p1pkpn+1. Now clearly, since it is an optimal solution, it would
have done the two products A1A2 . . . Ak and Ak+1Ak+2 . . . An also in the
optimal manner. So, if someone magically told you that the last operation
was the multiplication between k and k + 1, then we could recursively find
the optimal solution value to the problem involving A1, A2, . . . Ak and the
other problem involving the other matrices and from that get the optimal
value of our problem.

But of ocurse no one would tell us this information; this seems as hard as
solving the whole problem ! Here we come to our second question - What are
all the possibilities for k ? Clearly k could only be 1 or 2 or 3 or . . . n−1, for
a total of n− 1 possibilities. We will see that instead of assuming we know
k magically, we can try out all the possibilities.

Define Ans(i, j) to be the minimum number of operations needed to find
the product - AiAi+1 . . . Aj for each pair of numbers i, j with 1 ≤ i ≤ j ≤
n− 1. Then the above argument says that

Ans(i, j) =

{
0 if i = j
Mink:i≤k<jAns(i, k) + Ans(k + 1, j) + pipk+1pj+1 if i < j.

This is called the Dynamic Programming Recursion. It directly leads to
a recursive procedure. But it is easy to see that the reursive procedure is
wasteful - it repeatedly calls itself on the same arguments !!

To avoid the waste, let us figure out for which parameter values the
procedure is called. It is easy to see that the paremeters i, j can only take
on values satisfying 1 ≤ i ≤ j ≤ n − 1, for a total of O(n2) sets of values.
Now, instead of a recursive procedure, we will do the computation bottom-up
filling up a table of values of Ans(i, j). What is the correct order for doing
this ? We must do this in an order which makes sure that whenever we are
computing a particular Ans(i, j), the Ans(·, ·) needed for the computation of
Ans(i, j) have all been already computed. It is easy to see that it suffices to
do the computation in increasing order of j − i. It is a simple exercise now
to write the program itself.

Time Analysis For computing each of the O(n2) Ans(i, j) ’s, we have
to “fetch” O(n) previously computed Ans(·, ·) ’s, find O(n) quantities -
Ans(i, k) + Ans(k + 1, j) + pipk+1pj+1, each requiring O(1) operations, and
take the minimum of these O(n) quantities, for a grand total running time
of O(n× n2) = O(n3).

2



Finding the Solution The above only finds the optimal solution value
- i.e., the number of operations needed in an optimal solution. It remains to
see how to construct the optimal solution; this part is usually conceptually
simple once we know how to compute the optimal value as above. Here is
a quick idea - it is sufficient to remember for each i, j, which k acheives the
minimum in the Dynamic Programming Recursion above. One computes this
information as we execute the algorithm, computing the values of Ans(i, j)
bottom up. Once we have finished, we can reconstruct the optimal order by
looking up the best k for 1, n - call it k1, then looking up the best k ’s for
1, k1 and for k1, n etc. You could consult any text book for details.

Example 2 : Knapsack Problem
The problem is given n items, where item i has weight ai and benifit ci

and a knapsack of capacity b, find the subset of items which “fits” (whose
total weight is at most b) and has maximum total benifit subject to this.
This problem can obvioulsy be stated as :

Max
n∑

i=1

cixi

subject to
n∑

i=1

aixi ≤ b

xi ∈ {0, 1},

where we will assume that the ai, ci and b are given non-negative integers.
Let us try to answer the two questions. Suppose we had an optimal

solution on hand; what is the last thing we did ? - this has to do with
whether we put in or did not put in the last item into the knapsack. There
are then clearly only these two possibilities for the last item. If we are
magically told what we did with the last item, then it suffices to solve the
problem with the remaining n− 1 items - namley - items 1, 2, . . . n− 1, but
with a modified capacity (if we had packed the last item in.) While solving
this, we have to tackle the problem with the first n − 2 itmes with different
capacities etc. Thus, a recursive program will solve the problems

What is the best benifit we can derive with the first i items, with a
knapsack of capacity y ?

where y is in the range {0, 1, 2 . . . b}. This suggests defining the quantity
- Ans(i, y) - which is the maximum benifit we can derive by packing a subset

3



of the first i items into a knapsack of capacity y. The dynamic programming
recursion is then (where for simplicity we take Ans(i, y) to be −∞ if y < 0)

Ans(i, y) =

{
0 if y = 0 or if i = 0
Max (Ans(i− 1, y − ai) + ci , Ans(i− 1, y)) if i, y 6= 0.

There are a total of n(b+1) entries in the table to filled out bottom-up. Each
entry requires at most a the maximum of a constant number of comparisons
and other arithmetic operations. So the total running time is O(nb). You
can think about the following two questions :

The knapsack problem is known to be NP-hard, so it will only admit
a polynomial time algorithm if NP=P. Does the above alg. qualify as a
polynomial time algorithm ?

How does one get the actual solution ?

Example 3 : Allocation of a single Resource
There are n tasks and m units of a resource. We are given values -

Aij, i = 1, 2, . . .m; j = 1, 2, . . . n, where Aij tells us the amount of benifit we
can derive by allocating i units of the resource to task j. We are to find
the allocation (how many units of resource to each task) that maximizes the
total benifit. The problem then is : find x1, x2, . . . xn, satisfying :

n∑

j=1

Axi,j is maximized subject to

xi ∈ {0, 1, . . .m},
n∑

i=1

xi ≤ m.

The last thing we do in an optimal solution is - we allocate a certain number
of units of the resource to the last task. The possible values of this number
are 0, 1, 2, . . .m. Once we know this value, we have to solve a similar resource
allocation problem on the first n− 1 tasks.

This leads us to define Ans(i, j) as the maximum benifit we can derive
by an allocation of i units of the resource among the first j tasks. We have
the recursion:

Ans(i, j) =

{
0 if i = 0 or if j = 0
Maxk:0≤k≤iAns(i− k, j − 1) + Akj if i, j 6= 0.

4


